-
提出了一种新的类Quesne环状球谐振子势,应用二分量方法求解1/2-自旋粒子满足的Dirac方程, Dirac哈密顿量由标量和矢量类Quesne环状球谐振子势构成.在Σ=S(r)+V(r)=0的条件下,得到了Dirac旋量波函数下分量的束缚态解和能谱方程, 显示出类Quesne环状球谐振子势场中的赝自旋对称性.讨论了束缚态波函数和能谱方程的有关性质.
-
关键词:
- 类Quesne环状球谐振子势 /
- Dirac方程 /
- 赝自旋对称性 /
- 束缚态
A Quesne-like ring-shaped spherical harmonic oscillator potential is put foword and studied for spin 1/2 particles based on the Dirac equation, the Dirac Hamiltonian contains a scalar and a vector Quesne-like ring-shaped harmonic oscillator potentials. Setting Σ=S(r)+V(r)=0,we obtain the bound state solutions and eigenenergies with the two-component approach. The result shows the pseudospin symmetry exists in the Quesne-like ring-shaped harmonic oscillator potential. The general properties of both the ring-shaped spherical harmonic oscillator potential and the ring-shaped non-spherical harmonic oscillator potential are discussed.-
Keywords:
- Quesne-like ring-shaped harmonic oscillator potential /
- Dirac equation /
- pseudospin symmetry /
- bound state
计量
- 文章访问数: 8283
- PDF下载量: 750
- 被引次数: 0