搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超弹性球体入水过程空泡演化及球体变形实验

杨柳 孙铁志 魏英杰 王聪 李佳川 夏维学

引用本文:
Citation:

超弹性球体入水过程空泡演化及球体变形实验

杨柳, 孙铁志, 魏英杰, 王聪, 李佳川, 夏维学

Experimental study of cavity evolution and deformation during water entering into hyperelastic sphere

Yang Liu, Sun Tie-Zhi, Wei Ying-Jie, Wang Cong, Li Jia-Chuan, Xia Wei-Xue
PDF
HTML
导出引用
  • 超弹性材料是工程实际中常用的材料, 具有很强的非线性力学性能. 将超弹性材料应用于入水问题是一个新的跨学科研究方向. 与传统的刚性球体入水现象不同, 超弹性球体入水后极易发生变形. 为了探究该大变形的入水流固耦合问题, 本文采用高速摄像方法, 对超弹性球体垂直入水问题开展实验研究. 基于实验结果, 对比分析了球体材料属性和入水冲击条件对入水空泡流动及球体变形行为的影响. 实验结果表明, 超弹性球体入水后产生嵌套空泡现象的条件是需要足够大的入水冲击条件和小的材料剪切模量. 嵌套空泡产生和保持的时间与球体的剪切模量和直径有关. 超弹性球体的入水位移及其形成空泡的长度随入水冲击速度和剪切模量的增大而增大, 却随球体直径的增大而减小. 入水冲击速度的增加只会加剧球体的变形程度, 而不影响嵌套空泡的产生时刻. 同时, 本文对球体的变形行为随弗劳德数和剪切模量与水动力之比的变化特性进行了描述与研究.
    Hyperelastic materials, which have strong nonlinear mechanical properties, are commonly used in the engineering field. The application of hyperelastic materials to the water entry problem is a new interdisciplinary research topic. Unlike the water entering into a traditional rigid sphere, the hyperelastic sphere is very easy to deform during water entry. In order to explore the fluid-structure coupling problem with large deformations during water entry, a high-speed camera is used to study the problem of vertical water entering into hyperelastic sphere in this paper. Based on the experimental results, the effects of the material properties and impacting conditions on the cavity flow and sphere deformation behaviors during water entry are compared and analyzed. The experimental results show that the formation of the nested cavity after impacting a free surface of the hyperelastic sphere needs large enough impact conditions and small material shear modulus. The time for the nested cavity to be formed and retained during water entry is related to the material shear modulus and sphere diameter. The sphere displacement and length of cavity formed by the hyperelastic sphere increase with the increase of the impact velocity and material shear modulus, but decrease with the increase of the diameter of the sphere. The increase of the impacting velocity can only aggravate the deformation behaviors of the hyperelastic sphere, but does not affect the formation moment of the nested cavity. In addition, the characteristics for the deformation behaviors of the hyperelastic sphere to vary with the Froude number and the dimensionless ratio of material shear modulus to impacting hydrodynamic pressure are described and studied.
      通信作者: 魏英杰, yingjiewei@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11972138, 11672094) 资助的课题
      Corresponding author: Wei Ying-Jie, yingjiewei@hit.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos. 11972138, 11672094)
    [1]

    Kubota Y, Mochizuki O 2015 WJM 5 129Google Scholar

    [2]

    Epps B P, Techet A H 2007 Exp. Fluids. 43 691Google Scholar

    [3]

    Sun T, Wang H, Zou L, Zong Z, Li H 2019 Ocean. Eng. 194 106597Google Scholar

    [4]

    Xia W, Cong W, Wei Y, Li C 2020 Appl. Ocean. Res. 103 102322Google Scholar

    [5]

    Xia W X, Wang C, Wei Y J, Li J C, Yang L 2020 Exp. Fluids. 61 57Google Scholar

    [6]

    Worthington A M, Cole R S 1897 Philos. Trans. R. Soc. London 189 137Google Scholar

    [7]

    Worthington A M 1881 P. Roy. Soc. A. Math Phy. 33 347

    [8]

    Wood R W 1909 Science 29 464Google Scholar

    [9]

    Duclaux V, Caillé F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 591 1Google Scholar

    [10]

    Seddon C M, Moatamedi M 2006 Int. J. Impact. Eng. 32 1045Google Scholar

    [11]

    May A 1952 J. Appl. Phys. 23 1362Google Scholar

    [12]

    Yang L, Wei Y, Wang C, Xia W, Li J 2020 J. Appl. Phys. 127 064901Google Scholar

    [13]

    Truscott T T, Epps B P, Techet A H 2012 J. Fluid Mech. 704 173Google Scholar

    [14]

    Aristoff J M, Truscott T T, Techet A H, Bush J W M 2010 Phys. Fluids 22 70

    [15]

    Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45Google Scholar

    [16]

    何春涛, 王聪, 何乾坤, 仇洋 2012 61 134701Google Scholar

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701Google Scholar

    [17]

    施红辉, 周浩磊, 吴岩, 贾会霞, 张晓萍, 周素云, 章利特, 董若凌 2012 力学学报 44 49Google Scholar

    Shi H H, Zhou H L, Wu Y, Jia H X, Zhang X P, Zhou S Y, Zhang L T, Dong R L 2012 J. Mech. Phys. Solids. 44 49Google Scholar

    [18]

    李佳川, 魏英杰, 王聪, 邓环宇 2016 65 204703Google Scholar

    Li J C, Wei Y J, Wang C, Deng H Y 2016 Acta Phys. Sin. 65 204703Google Scholar

    [19]

    李佳川, 魏英杰, 王聪 2019 兵工学报 40 124Google Scholar

    Li J C, Wei Y J, Wang C 2019 Acta. Armamentarii. 40 124Google Scholar

    [20]

    卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊 2019 力学学报 51 150

    Lu J X, Wei Y J, Wang C, Lu L R, Xu H 2019 J. Mech. Phys. Solids. 51 150

    [21]

    Yun H, Lyu X, Wei Z 2020 Ocean. Eng. 201 107143Google Scholar

    [22]

    Yun H, Lyu X, Wei Z 2020 J. Visual. Japan. 23 49Google Scholar

    [23]

    Truscott T T, Epps B P, Belden J 2014 Annu. Rev. Fluid Mech. 46 355Google Scholar

    [24]

    Truscott T T, Techet A H 2006 Phys. Fluids 18 4173

    [25]

    Speirs N B, Mansoor M M, Belden J, Truscott T T 2019 J. Fluid Mech. 862 R3Google Scholar

    [26]

    Russo S, Biscarini C, Facci A L, Falcucci G, Jannelli E 2017 J. Mar Sci Tech. Japan. 23 67

    [27]

    Facci A L, Falcucci G, Agresta A, Biscarini C 2019 Water 11 1048Google Scholar

    [28]

    Russo S, Falcucci G 2018 ICNAAM. Greece 1987 25

    [29]

    Panciroli R, Falcucci G, Erme G, Santis E D, Jannelli E 2015 Aip. Conference, AIP Publishing LLC, April 1, 1648 570011

    [30]

    孙士丽 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Sun S L 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [31]

    Hurd R C, Belden J, Jandron M A, Fanning D T, Bower A F, Truscott T T 2017 J. Fluid Mech. 824 912Google Scholar

  • 图 1  实验系统示意图[12]

    Fig. 1.  Schematic diagram of experimental system[12].

    图 2  参数测试图

    Fig. 2.  Schematic diagram of test parameters.

    图 3  球体制作流程[12]

    Fig. 3.  Flow chart of the sphere manufacturing[12].

    图 4  超弹性球入水空泡

    Fig. 4.  Water-entry cavity formed by hyperelastic spheres.

    图 5  不同剪切模量球体入水空泡形态对比 (a) G = 6.1 kPa; (b) G = 10.2 kPa; (c) G = 47.0 kPa

    Fig. 5.  Comparison of cavity shapes formed by hyperelastic spheres with different shear moduli: (a) G = 6.1 kPa; (b) G = 10.2 kPa; (c) G = 47.0 kPa.

    图 6  不同剪切模量球体的入水位移

    Fig. 6.  Displacement of spheres with different shear moduli.

    图 7  不同冲击速度下球体入水空泡形态对比 (a)V = 1.1 m/s; (b) V = 2.5 m/s; (c) V = 3.3 m/s

    Fig. 7.  Comparison of cavity shapes formed by hyperelastic spheres with different impact velocities: (a)V = 1.1 m/s; (b) V = 2.5 m/s; (c) V = 3.3 m/s.

    图 8  不同入水冲击速度下的入水位移

    Fig. 8.  Displacement of sphere with different impact velocities

    图 9  不同冲击速度下嵌套空泡形态对比 (a) V = 3.3 m/s; (b) V = 4.4 m/s; (c) V = 4.8 m/s

    Fig. 9.  Comparison of nested cavities with different impact velocities: (a) V = 3.3 m/s; (b) V = 4.4 m/s; (c) V = 4.8 m/s.

    图 10  不同直径球体入水空泡形态对比 (a) D = 80 mm; (b) D = 61 mm; (c) D = 56 mm

    Fig. 10.  Comparison of cavity shapes formed by hyperelastic spheres with different diameters: (a) D = 80 mm; (b) D = 61 mm; (c) D = 56 mm.

    图 11  不同直径球体入水位移

    Fig. 11.  Displacement of sphere with different diameters.

    图 12  超弹性球体入水变形量系数的时间历程

    Fig. 12.  Time history of sphere deformation coefficient during water entry.

    图 13  超弹性球体(G = 10.2 kPa)第一、二变形周期内λNFr的变化

    Fig. 13.  Change of λN in the first and second deformation cycles (G = 10.2 kPa) with Fr

    图 14  超弹性球体(D = 61 mm)第一、二变形周期内λNη的变化

    Fig. 14.  Change of λN in the first and second deformation cycles (D = 61 mm) with η.

    Baidu
  • [1]

    Kubota Y, Mochizuki O 2015 WJM 5 129Google Scholar

    [2]

    Epps B P, Techet A H 2007 Exp. Fluids. 43 691Google Scholar

    [3]

    Sun T, Wang H, Zou L, Zong Z, Li H 2019 Ocean. Eng. 194 106597Google Scholar

    [4]

    Xia W, Cong W, Wei Y, Li C 2020 Appl. Ocean. Res. 103 102322Google Scholar

    [5]

    Xia W X, Wang C, Wei Y J, Li J C, Yang L 2020 Exp. Fluids. 61 57Google Scholar

    [6]

    Worthington A M, Cole R S 1897 Philos. Trans. R. Soc. London 189 137Google Scholar

    [7]

    Worthington A M 1881 P. Roy. Soc. A. Math Phy. 33 347

    [8]

    Wood R W 1909 Science 29 464Google Scholar

    [9]

    Duclaux V, Caillé F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 591 1Google Scholar

    [10]

    Seddon C M, Moatamedi M 2006 Int. J. Impact. Eng. 32 1045Google Scholar

    [11]

    May A 1952 J. Appl. Phys. 23 1362Google Scholar

    [12]

    Yang L, Wei Y, Wang C, Xia W, Li J 2020 J. Appl. Phys. 127 064901Google Scholar

    [13]

    Truscott T T, Epps B P, Techet A H 2012 J. Fluid Mech. 704 173Google Scholar

    [14]

    Aristoff J M, Truscott T T, Techet A H, Bush J W M 2010 Phys. Fluids 22 70

    [15]

    Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45Google Scholar

    [16]

    何春涛, 王聪, 何乾坤, 仇洋 2012 61 134701Google Scholar

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701Google Scholar

    [17]

    施红辉, 周浩磊, 吴岩, 贾会霞, 张晓萍, 周素云, 章利特, 董若凌 2012 力学学报 44 49Google Scholar

    Shi H H, Zhou H L, Wu Y, Jia H X, Zhang X P, Zhou S Y, Zhang L T, Dong R L 2012 J. Mech. Phys. Solids. 44 49Google Scholar

    [18]

    李佳川, 魏英杰, 王聪, 邓环宇 2016 65 204703Google Scholar

    Li J C, Wei Y J, Wang C, Deng H Y 2016 Acta Phys. Sin. 65 204703Google Scholar

    [19]

    李佳川, 魏英杰, 王聪 2019 兵工学报 40 124Google Scholar

    Li J C, Wei Y J, Wang C 2019 Acta. Armamentarii. 40 124Google Scholar

    [20]

    卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊 2019 力学学报 51 150

    Lu J X, Wei Y J, Wang C, Lu L R, Xu H 2019 J. Mech. Phys. Solids. 51 150

    [21]

    Yun H, Lyu X, Wei Z 2020 Ocean. Eng. 201 107143Google Scholar

    [22]

    Yun H, Lyu X, Wei Z 2020 J. Visual. Japan. 23 49Google Scholar

    [23]

    Truscott T T, Epps B P, Belden J 2014 Annu. Rev. Fluid Mech. 46 355Google Scholar

    [24]

    Truscott T T, Techet A H 2006 Phys. Fluids 18 4173

    [25]

    Speirs N B, Mansoor M M, Belden J, Truscott T T 2019 J. Fluid Mech. 862 R3Google Scholar

    [26]

    Russo S, Biscarini C, Facci A L, Falcucci G, Jannelli E 2017 J. Mar Sci Tech. Japan. 23 67

    [27]

    Facci A L, Falcucci G, Agresta A, Biscarini C 2019 Water 11 1048Google Scholar

    [28]

    Russo S, Falcucci G 2018 ICNAAM. Greece 1987 25

    [29]

    Panciroli R, Falcucci G, Erme G, Santis E D, Jannelli E 2015 Aip. Conference, AIP Publishing LLC, April 1, 1648 570011

    [30]

    孙士丽 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Sun S L 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [31]

    Hurd R C, Belden J, Jandron M A, Fanning D T, Bower A F, Truscott T T 2017 J. Fluid Mech. 824 912Google Scholar

  • [1] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究.  , 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [2] 张柱, 吴智政, 江新祥, 王园园, 朱进利, 李峰. 磁液变形镜的镜面动力学建模和实验验证.  , 2018, 67(3): 034702. doi: 10.7498/aps.67.20171281
    [3] 宋武超, 魏英杰, 路丽睿, 王聪, 卢佳兴. 基于势流理论的回转体并联入水双空泡演化动力学研究.  , 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375
    [4] 路中磊, 魏英杰, 王聪, 曹伟. 开放空腔壳体入水扰动流场结构及空泡失稳特征.  , 2017, 66(6): 064702. doi: 10.7498/aps.66.064702
    [5] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀.  , 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [6] 路中磊, 魏英杰, 王聪, 孙钊. 基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究.  , 2016, 65(1): 014704. doi: 10.7498/aps.65.014704
    [7] 李佳川, 魏英杰, 王聪, 邓环宇. 加热球体入水空泡实验研究.  , 2016, 65(20): 204703. doi: 10.7498/aps.65.204703
    [8] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨.  , 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [9] 何春涛, 王聪, 何乾坤, 仇洋. 圆柱体低速入水空泡试验研究.  , 2012, 61(13): 134701. doi: 10.7498/aps.61.134701
    [10] 魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥. 线性密度分层流体中半球体运动生成内波的实验研究.  , 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [11] 赵昆, 张坤, 王家佳, 于金, 吴三械. Heusler合金Pd2 CrAl四方变形、磁性及弹性常数的第一性原理计算.  , 2011, 60(12): 127101. doi: 10.7498/aps.60.127101
    [12] 龚博致, 张秉坚. 水中自然超空泡机理及减阻效应的非平衡分子动力学研究.  , 2009, 58(3): 1504-1509. doi: 10.7498/aps.58.1504
    [13] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究.  , 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [14] 王雨虹, 王江安, 任席闯. 激光空泡特性实验与数值计算研究.  , 2009, 58(12): 8372-8378. doi: 10.7498/aps.58.8372
    [15] 宁禹, 余浩, 周虹, 饶长辉, 姜文汉. 20单元双压电片变形镜的性能测试与闭环校正实验研究.  , 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [16] 文玉华, 张 杨, 朱梓忠. 晶体非线弹性变形的原子级模拟研究.  , 2008, 57(3): 1834-1839. doi: 10.7498/aps.57.1834
    [17] 赵 瑞, 徐荣青, 沈中华, 陆 建, 倪晓武. 黏性液体中激光空泡脉动特性的理论和实验研究.  , 2006, 55(9): 4783-4788. doi: 10.7498/aps.55.4783
    [18] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构.  , 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] 张德兴, 于肇贤, 于舸. 双参数变形量子Lie超代数SL(q,s)(2/1)的不可约表示.  , 1995, 44(7): 1009-1017. doi: 10.7498/aps.44.1009
    [20] 于敏, 邓稼先, 周孝谦, 李扬国. 轻原子核的变形.  , 1958, 14(6): 449-468. doi: 10.7498/aps.14.449
计量
  • 文章访问数:  6240
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 修回日期:  2020-11-10
  • 上网日期:  2021-04-05
  • 刊出日期:  2021-04-20

/

返回文章
返回
Baidu
map