搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进经验模态分解域内心动物理特征识别模式分量的心电信号重建

牛晓东 卢莉蓉 王鉴 韩星程 郭树言 王黎明

引用本文:
Citation:

基于改进经验模态分解域内心动物理特征识别模式分量的心电信号重建

牛晓东, 卢莉蓉, 王鉴, 韩星程, 郭树言, 王黎明

Electrocardiogram signal reconstruction based on mode component identification by heartbeat physical feature in improved empirical mode decomposition domain

Niu Xiao-Dong, Lu Li-Rong, Wang Jian, Han Xing-Cheng, Guo Shu-Yan, Wang Li-Ming
PDF
HTML
导出引用
  • 心电图(electrocardiogram, ECG)诊断心脏疾病的严格标准, 要求有效地消除噪声并准确地重建ECG信号. 经验模式分解(empirical mode decomposition, EMD)方法重建ECG信号中, 模式混叠及重建采用模式分量的识别以经验为基础, 导致重建ECG信号准确度降低, 且方法不具有自适应和通用性. 本文首先基于积分均值定理提出一种改进的EMD方法—积分均值模式分解(integral mean mode decomposition, IMMD)方法, 经5000个高斯白噪声样本的蒙特卡罗法验证, IMMD方法比EMD具有更优多分辨率分析能力, 能够有效地缓解模式混叠. 其次, 基于ECG信号内固有心动物理特征量识别重建ECG信号所采用的模式分量, 具有现实物理意义, 因此, 方法具有自适应和通用性. 经验证, 提出方法重建47例ECG信号与原ECG信号的相关系数中: 31例优于变分模式分解方法; 33例优于Haar小波软阈值法; 42例优于集总经验模式分解方法; 45例优于EMD方法. 相关系数均值为0.8904, 方差为0.0071, 表现稳定且最优.
    Electrocardiogram (ECG) diagnosis is based on the waveform, duration and amplitude of characteristic wave, which are required to have a high accuracy for ECG signal reconstruction. As an effective nonlinear signal processing method, empirical mode decomposition (EMD) has been widely used for diagnosing and reconstructing the ECG signal, but there are two problems arising here. One is the mode mixing, and the other is that the mode components used in reconstruction are identified by experience. Therefore, the method of reconstruction is not adaptive and universal, and reconstructed ECG signal loses accuracy. Firstly, we propose an improved EMD method, which is called integral mean mode decomposition (IMMD). The analysis of 5000 samples of Gaussian white noise shows that IMMD has better multi-resolution analysis ability than EMD, and it can effectively alleviate mode mixing consequently. Secondly, based on the inherent physical characteristics of ECG signal, cardiac cycle or heart rate (HR), it has practical physical significance to identify the mode components used in ECG signal reconstruction. The cardiac cycle feature acts as the intrinsic mode function (IMF) component through two modes. 1) For the low-order IMF that belongs to the ECG signal, the cardiac cycle feature acts as the amplitude modulation. The envelope of the IMF component has the characteristics of the cardiac cycle, and the frequency corresponding to the maximum amplitude in the spectrum of the envelope is equal to HR. 2) For the high-order IMF that belongs to the ECG signal, the cardiac cycle feature acts as frequency modulation. Those IMF components have the harmonic characteristics of periodic heartbeats, and the maximum amplitude in the spectrum corresponds to an integral multiple of HR (usually 1-3 times). The noise attributed to IMF component cannot show the above two cardiac cycle characteristics. Thus the proposed method is adaptive and universal. The 47 ECG signals with baseline drift and muscle artifact noise are tested. The results show that the proposed method is more effective than the variational mode decomposition (VMD), Haar wavelet with soft threshold, ensemble empirical mode decomposition (EEMD) and EMD. Among the 47 correlation coefficients between reconstructed and original ECG signals, the proposed method has 31 better than VMD, 33 better than Haar wavelet, 42 better than EEMD and 45 better than EMD. The mean of 47 correlation coefficients from the proposed method is 0.8904, and the variance is 0.0071, which shows that the proposed method has good performance and stability.
      通信作者: 王黎明, wlm@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61842103, 61871351, 61801437)、电子测试技术国防科技重点实验室基金(批准号: 6142001180410)和山西省高等学校科技创新基金(批准号: 2020L0301, 2020L0389)资助的课题.
      Corresponding author: Wang Li-Ming, wlm@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61842103, 61871351, 61801437), the Key Laboratory of National Defense Science and Technology for Electronic Testing Technology Foundation, China (Grant No. 6142001180410), and the Science and Technology Innovation Foundation of the Higher Education Institutions of Shanxi Province, China (Grant Nos. 2020L0301, 2020L0389).
    [1]

    黄宛 1998 临床心电图学 (第5版) (北京: 人民卫生出版社) 第22, 428页

    Huang W 1998 Clinical Electrocardiography (5th Ed.) (Beijing: People's Medical Publishing House Press) pp22, 428 (in Chinese)

    [2]

    Poungponsri S, Yu X H 2013 Neurocomputing 117 206Google Scholar

    [3]

    庞宇, 邓璐, 林金朝, 李章勇, 周前能, 李国权, 黄华伟, 张懿, 吴炜 2014 63 098701Google Scholar

    Pang Y, Deng L, Lin J C, Li Z Y, Zhou Q N, Li G Q, Huang H W, Zhang Y, Wu W 2014 Acta Phys. Sin. 63 098701Google Scholar

    [4]

    Sharma R R, Pachori R B 2018 Biomed. Signal Process. Control 45 33Google Scholar

    [5]

    de Oliveira B R, Duarte M A Q, de Abreu C C E, Vieira F J 2018 Res. Biomed. Eng. 34 73Google Scholar

    [6]

    Zou C, Qin Y, Sun C, Li W, Chen W 2017 Pervasive Mob. Comput. 40 267Google Scholar

    [7]

    Jung W H, Lee S G 2012 Comput. Meth. Programs Biomed. 108 1121Google Scholar

    [8]

    Yadav S K, Sinha R, Bora P K 2015 IET Signal Proc. 9 88Google Scholar

    [9]

    Yu Q, Guan Q, Li P, Liu T B, Si J F, Zhao Y, Liu H X, Wang Y Q 2017 Chin. Phys. B 26 118702Google Scholar

    [10]

    Satija U, Ramkumar B, Manikandan M S 2018 IEEE J. Biomed. Health 22 722Google Scholar

    [11]

    Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H 1998 Proc. R. Soc. Lond. A 454 903Google Scholar

    [12]

    Fu M J, Zhuang J J, Hou F Z, Zhan Q B, Shao Y, Ning X B 2010 Chin. Phys. B 19 058701Google Scholar

    [13]

    Zhu Y H, Yuan J, Stephen Z P, Oliver D K, Cheng Q, Wang X D, Tao C, Liu X J, Xu G, Paul L C 2017 Chin. Phys. B 26 064301Google Scholar

    [14]

    Wu Z, Huang N E 2009 Adv. Adapt. Data Anal. 1 1Google Scholar

    [15]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Signal Process. 62 531Google Scholar

    [16]

    曾彭, 刘红星, 宁新宝, 庄建军, 张兴敢 2015 64 078701Google Scholar

    Zeng P, Liu H X, Ning X B, Zhuang J J, Zhang X G 2015 Acta Phys. Sin. 64 078701Google Scholar

    [17]

    Nazari M, Sakhaei S M 2018 IEEE J. Biomed. Health 22 1059Google Scholar

    [18]

    Ibtehaz N, Rahman M S, Rahman M S 2019 Biomed. Signal Process. Control 49 349Google Scholar

    [19]

    Jarchi D, Casson A J 2017 IEEE Trans. Biomed. Eng. 64 2042Google Scholar

    [20]

    Lee J, McManus D D, Merchant S, Chon K H 2012 IEEE Trans. Biomed. Eng. 59 1499Google Scholar

    [21]

    盖强 2001 博士学位论文 (大连: 大连理工大学)

    Gai Q 2001 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [22]

    Huang N E, Wu M L C, Long S R, Shen S S P, Qu W, Gloersen P, Fan K L 2003 Proc. R. Soc. Lond. A 459 2317Google Scholar

    [23]

    Flandrin P, Rilling G, Goncalves P 2004 IEEE Signal Process. Lett. 11 112Google Scholar

    [24]

    Flandrin P, Goncalves P 2004 Int. J. Wavelets Multiresolution. Inf. Process. 2 477Google Scholar

    [25]

    Huang N E, Hu K, Yang A C C, Chang H C, Jia D, Liang W K, Yeh J R, Kao C L, Juan C H, Peng C K, Meijer J H, Wang Y H, Long S R, Wu Z 2016 Phil. Trans. R. Soc. A 374 20150206Google Scholar

    [26]

    Moody G B, Mark R G 2001 IEEE Eng. Med. Biol. Mag. 20 45Google Scholar

    [27]

    Moody G B, Muldrow W E, Mark R G 1984 Comput Cardiol 11 381

    [28]

    Motin M A, Karmakar C, Palaniswami M 2019 IEEE Signal Process. Lett. 26 592Google Scholar

    [29]

    Li H Y, Wang C J, Zhao D 2018 IET Signal Proc. 12 844Google Scholar

  • 图 1  IMMD和EMD方法分解高斯白噪声的等效滤波器组特性 (a) IMMD (实线)和EMD (虚线)的IMF分量的平均功率谱; (b) 基于(5)式, IMMD (实线)和EMD (虚线)的IMF分量的平均功率谱坍缩重合

    Fig. 1.  Equivalent filter banks of IMMD and EMD decomposing Gauss white noises: (a) Averaged power spectra of IMFs from IMMD (solid curves) and EMD (dotted curves); (b) collapse and coincidence of the average power spectrum of IMFs from IMMD (solid curves) and EMD (dotted curves) based on Eq. (5).

    图 2  实验采用信号波形 (a) 105 ECG信号; (b) BW信号; (c) MA信号; (d)含噪105 ECG信号

    Fig. 2.  Waveform of signals used in experiment: (a) No. 105 ECG signal; (b) BW signal; (c) MA signal; (d) the noisy No. 105 ECG signal.

    图 3  含噪105 ECG信号的IMF (蓝色曲线)及其包络(红色曲线)

    Fig. 3.  IMF envelopes (red curves) and IMFs (blue curves) of noisy No. 105 ECG signal.

    图 4  含噪105 ECG信号IMFs的功率谱(蓝色曲线), 及IMFs包络的功率谱(红色曲线)

    Fig. 4.  Power spectra of envelopes of IMFs (red curves) and of IMFs (blue curves) of noisy No. 105 ECG signal.

    图 5  原105 ECG信号(蓝色点虚线)与由五种方法重建的105 ECG信号(红色实线) (a) 本文方法; (b) VMD; (c) Haar小波软阈值; (d) EMMD; (e) EMD

    Fig. 5.  Original No. 105 ECG signal (blue dotted curves) and the No. 105 ECG signals (red solid curves) reconstructed by 5 methods: (a) The proposed method; (b) VMD; (c) Haar wavelet with soft threshold; (d) EEMD; (e) EMD.

    图 6  采用五种方法重建47个ECG信号的R值柱状图

    Fig. 6.  Histogram of R values of 47 ECG signals reconstructed by 5 methods.

    图 7  采用五种方法重建47个ECG信号的相关系数R值的统计盒子图

    Fig. 7.  Five box-plots of R values of 47 ECG signals reconstructed by 5 methods.

    表 1  五种方法重建105 ECG信号的特征量值

    Table 1.  Characteristic values of No. 105 ECG signals reconstructed by 5 methods.

    重建方法RSNR/dBMSE/mV2
    本文方法0.957710.77400.0076
    VMD0.957210.66020.0078
    Haar0.94349.00700.0114
    EEMD0.92048.11260.0140
    EMD0.76383.69820.0388
    下载: 导出CSV

    表 2  实验采用的部分ECG信号对应心律失常类型

    Table 2.  Type of arrhythmia corresponding to some ECG signals used in the experiment.

    心律失常类别ECG索引号
    房性早搏100, 232
    P波峰值和
    起搏心搏
    102, 104, 107, 217
    心房颤动201, 203, 210, 219, 221
    预激综合征230
    左束支传导阻滞109, 111, 214
    右束支传导阻滞118, 124, 207, 212, 231, 232
    室性早搏119, 200, 203, 207, 208, 210,
    214, 221, 233
    下载: 导出CSV

    表 3  五种方法重建47个ECG信号的R值的均值与方差

    Table 3.  Means and variances of R values of 47 ECG signals reconstructed by 5 methods.

    重建方法均值方差
    本文方法0.89040.0071
    VMD0.88260.0081
    Haar0.88040.0058
    EEMD0.82220.0166
    EMD0.71000.0143
    下载: 导出CSV
    Baidu
  • [1]

    黄宛 1998 临床心电图学 (第5版) (北京: 人民卫生出版社) 第22, 428页

    Huang W 1998 Clinical Electrocardiography (5th Ed.) (Beijing: People's Medical Publishing House Press) pp22, 428 (in Chinese)

    [2]

    Poungponsri S, Yu X H 2013 Neurocomputing 117 206Google Scholar

    [3]

    庞宇, 邓璐, 林金朝, 李章勇, 周前能, 李国权, 黄华伟, 张懿, 吴炜 2014 63 098701Google Scholar

    Pang Y, Deng L, Lin J C, Li Z Y, Zhou Q N, Li G Q, Huang H W, Zhang Y, Wu W 2014 Acta Phys. Sin. 63 098701Google Scholar

    [4]

    Sharma R R, Pachori R B 2018 Biomed. Signal Process. Control 45 33Google Scholar

    [5]

    de Oliveira B R, Duarte M A Q, de Abreu C C E, Vieira F J 2018 Res. Biomed. Eng. 34 73Google Scholar

    [6]

    Zou C, Qin Y, Sun C, Li W, Chen W 2017 Pervasive Mob. Comput. 40 267Google Scholar

    [7]

    Jung W H, Lee S G 2012 Comput. Meth. Programs Biomed. 108 1121Google Scholar

    [8]

    Yadav S K, Sinha R, Bora P K 2015 IET Signal Proc. 9 88Google Scholar

    [9]

    Yu Q, Guan Q, Li P, Liu T B, Si J F, Zhao Y, Liu H X, Wang Y Q 2017 Chin. Phys. B 26 118702Google Scholar

    [10]

    Satija U, Ramkumar B, Manikandan M S 2018 IEEE J. Biomed. Health 22 722Google Scholar

    [11]

    Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H 1998 Proc. R. Soc. Lond. A 454 903Google Scholar

    [12]

    Fu M J, Zhuang J J, Hou F Z, Zhan Q B, Shao Y, Ning X B 2010 Chin. Phys. B 19 058701Google Scholar

    [13]

    Zhu Y H, Yuan J, Stephen Z P, Oliver D K, Cheng Q, Wang X D, Tao C, Liu X J, Xu G, Paul L C 2017 Chin. Phys. B 26 064301Google Scholar

    [14]

    Wu Z, Huang N E 2009 Adv. Adapt. Data Anal. 1 1Google Scholar

    [15]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Signal Process. 62 531Google Scholar

    [16]

    曾彭, 刘红星, 宁新宝, 庄建军, 张兴敢 2015 64 078701Google Scholar

    Zeng P, Liu H X, Ning X B, Zhuang J J, Zhang X G 2015 Acta Phys. Sin. 64 078701Google Scholar

    [17]

    Nazari M, Sakhaei S M 2018 IEEE J. Biomed. Health 22 1059Google Scholar

    [18]

    Ibtehaz N, Rahman M S, Rahman M S 2019 Biomed. Signal Process. Control 49 349Google Scholar

    [19]

    Jarchi D, Casson A J 2017 IEEE Trans. Biomed. Eng. 64 2042Google Scholar

    [20]

    Lee J, McManus D D, Merchant S, Chon K H 2012 IEEE Trans. Biomed. Eng. 59 1499Google Scholar

    [21]

    盖强 2001 博士学位论文 (大连: 大连理工大学)

    Gai Q 2001 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [22]

    Huang N E, Wu M L C, Long S R, Shen S S P, Qu W, Gloersen P, Fan K L 2003 Proc. R. Soc. Lond. A 459 2317Google Scholar

    [23]

    Flandrin P, Rilling G, Goncalves P 2004 IEEE Signal Process. Lett. 11 112Google Scholar

    [24]

    Flandrin P, Goncalves P 2004 Int. J. Wavelets Multiresolution. Inf. Process. 2 477Google Scholar

    [25]

    Huang N E, Hu K, Yang A C C, Chang H C, Jia D, Liang W K, Yeh J R, Kao C L, Juan C H, Peng C K, Meijer J H, Wang Y H, Long S R, Wu Z 2016 Phil. Trans. R. Soc. A 374 20150206Google Scholar

    [26]

    Moody G B, Mark R G 2001 IEEE Eng. Med. Biol. Mag. 20 45Google Scholar

    [27]

    Moody G B, Muldrow W E, Mark R G 1984 Comput Cardiol 11 381

    [28]

    Motin M A, Karmakar C, Palaniswami M 2019 IEEE Signal Process. Lett. 26 592Google Scholar

    [29]

    Li H Y, Wang C J, Zhao D 2018 IET Signal Proc. 12 844Google Scholar

  • [1] 钟志, 赵婉婷, 单明广, 刘磊. 远心同-离轴混合数字全息高分辨率重建方法.  , 2021, 70(15): 154202. doi: 10.7498/aps.70.20210190
    [2] 景鹏, 张学军, 孙知信. 基于弹性变分模态分解的癫痫脑电信号分类方法.  , 2021, 70(1): 018702. doi: 10.7498/aps.70.20200904
    [3] 丰卉, 孙彪, 马书根. 分块稀疏信号1-bit压缩感知重建方法.  , 2017, 66(18): 180202. doi: 10.7498/aps.66.180202
    [4] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析.  , 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [5] 张涛, 陈万忠, 李明阳. 基于AdaBoost算法的癫痫脑电信号识别.  , 2015, 64(12): 128701. doi: 10.7498/aps.64.128701
    [6] 姚文坡, 刘铁兵, 戴加飞, 王俊. 脑电信号的多尺度排列熵分析.  , 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [7] 刘大钊, 王俊, 李锦, 李瑜, 徐文敏, 赵筱. 颠倒睡眠状态调制心率变异性信号的功率谱和基本尺度熵分析.  , 2014, 63(19): 198703. doi: 10.7498/aps.63.198703
    [8] 庞宇, 邓璐, 林金朝, 李章勇, 周前能, 李国权, 黄华伟, 张懿, 吴炜. 基于形态滤波的心电信号去除基线漂移方法.  , 2014, 63(9): 098701. doi: 10.7498/aps.63.098701
    [9] 张梅, 王俊. 基于改进的符号相对熵的脑电信号时间不可逆性研究.  , 2013, 62(3): 038701. doi: 10.7498/aps.62.038701
    [10] 吴莎, 李锦, 张明丽, 王俊. 基于改进的符号转移熵的心脑电信号耦合研究.  , 2013, 62(23): 238701. doi: 10.7498/aps.62.238701
    [11] 李锦, 刘大钊. 昼夜节律下心率变异性信号的熵信息和谱特征.  , 2012, 61(20): 208701. doi: 10.7498/aps.61.208701
    [12] 吴逢铁, 马亮, 张前安, 郑维涛, 蒲继雄. 聚焦高阶Bessel-Gauss光束重建的理论和实验研究.  , 2012, 61(1): 014202. doi: 10.7498/aps.61.014202
    [13] 边洪瑞, 王江, 韩春晓, 邓斌, 魏熙乐, 车艳秋. 基于复杂度的针刺脑电信号特征提取.  , 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [14] 唐智灵, 杨小牛, 李建东. 调制无线电信号的分形特征研究.  , 2011, 60(5): 056401. doi: 10.7498/aps.60.056401
    [15] 沈韡, 王俊. 基于符号相对熵的心电信号时间不可逆性分析.  , 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [16] 马千里, 卞春华, 王俊. 脑电信号的标度分析及其在睡眠状态区分中的应用.  , 2010, 59(7): 4480-4484. doi: 10.7498/aps.59.4480
    [17] 韩春晓, 王江, 车艳秋, 邓斌, 郭义, 郭永明, 刘阳阳. 针刺足三里的脊髓背根神经电信号非线性特征提取.  , 2010, 59(8): 5880-5887. doi: 10.7498/aps.59.5880
    [18] 孟庆芳, 周卫东, 陈月辉, 彭玉华. 基于非线性预测效果的癫痫脑电信号的特征提取方法.  , 2010, 59(1): 123-130. doi: 10.7498/aps.59.123
    [19] 周玉淑, 曹洁. 有限区域风场的分解和重建.  , 2010, 59(4): 2898-2906. doi: 10.7498/aps.59.2898
    [20] 庄建军, 宁新宝, 邹 鸣, 孙 飙, 杨 希. 两种熵测度在量化射击运动员短时心率变异性信号复杂度上的一致性.  , 2008, 57(5): 2805-2811. doi: 10.7498/aps.57.2805
计量
  • 文章访问数:  6812
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 修回日期:  2020-09-02
  • 上网日期:  2021-01-22
  • 刊出日期:  2021-02-05

/

返回文章
返回
Baidu
map