-
本文进行了最近邻网络的时空混沌同步研究.以时空混沌系统作为网络的节点,基于Lyapunov稳定性定理,通过确定网络的最大Lyapunov指数,得到了实现网络完全同步的条件.采用Fisher-Kolmogorov时空混沌系统作为网络节点实例进行了仿真模拟,获得了理想的同步效果.进一步研究了有界噪声影响下网络的同步性能,结果显示它具有较强的抗干扰能力.
-
关键词:
- 同步 /
- 最近邻网络 /
- 时空混沌 /
- Lyapunov指数
The synchronization of spatiotemporal chaos in a nearest-neighbor coupled network is studied. Spatiotemporal chaos systems are taken as the nodes of the network,and the condition to realize global synchronization of the network is obtained by identifying the maximum Lyapunov exponent of the network according to Lyapunov stability theory. The nearest-neighbor coupled network with nodes of Fisher-Kolmogorov spatiotemporal chaos systems is taken as an example for simulation,the synchronization of spatiotemporal chaos for the network is checked. The synchronizing function of the network under bounded noise is further studied,and the results show that the method has good capability of anti-jamming.-
Keywords:
- synchronization /
- nearest-neighbor coupled network /
- spatiotemporal chaos /
- Lyapunov exponent
[1] Watts D J,Strogatz S H 1998 Nature 393 440
[2] Barabási A L,Albert R 1999 Science 286 509
[3] Adamic L A,Huberman B A 2000 Science 287 2115
[4] Stelling J,Klamt S,Bettenbrock K,Schuster S,Gilles E D 2002 Nature 420 190
[5] Timme M,Wolf F,Geisel T 2004 Phys. Rev. Lett. 92 74101
[6] Ravasz E,Barabási A L 2003 Phys. Rev. E 67 26112
[7] Lü J H,Yu X H,Chen G R 2004 Physica A 334 281
[8] Motter A E,Zhou C,Kurths J 2005 Phys. Rev. E 71 16116
[9] Fang J Q,Bi Q,Li Y,Lu X B,Liu Q 2007 Sci. Chin. G 50 379
[10] Xu D,Li X,Wang X F 2007 Acta Phys. Sin. 56 1313 (in Chinese) [许 丹、李 翔、汪小帆 2007 56 1313]
[11] Xiang L Y,Liu Z X,Chen Z Q,Yuan Z Z 2008 Sci. Chin. F 51 511
[12] Song Y R,Jing G P 2009 Acta Phys. Sin. 58 5911 (in Chinese) [宋玉蓉、蒋国平 2009 58 5911]
[13] Atay F M,Jost J,Wende A 2004 Phys. Rev. Lett. 92 144101
[14] Haken H 2005 Physica D 205 1
[15] Lü L,Xia X L 2009 Acta Phys. Sin. 58 814 (in Chinese) [吕 翎、夏晓岚 2009 58 814]
[16] Checco P,Biey M,Kocarev L 2008 Chaos,Solitons and Fractals 35 562
[17] Hung Y C,Huang Y T,Ho M C,Hu C K 2008 Phys. Rev. E 77 16202
[18] Lü L,Zhang C 2009 Acta Phys. Sin. 58 1462 (in Chinese) [吕 翎、张 超 2009 58 1462]
[19] Ma X J,Wang Y,Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟、王 延、郑志刚 2009 58 4426]
[20] Manne K K,Hurd A J,Kenkre V M 2000 Phys. Rev. E 61 4177
-
[1] Watts D J,Strogatz S H 1998 Nature 393 440
[2] Barabási A L,Albert R 1999 Science 286 509
[3] Adamic L A,Huberman B A 2000 Science 287 2115
[4] Stelling J,Klamt S,Bettenbrock K,Schuster S,Gilles E D 2002 Nature 420 190
[5] Timme M,Wolf F,Geisel T 2004 Phys. Rev. Lett. 92 74101
[6] Ravasz E,Barabási A L 2003 Phys. Rev. E 67 26112
[7] Lü J H,Yu X H,Chen G R 2004 Physica A 334 281
[8] Motter A E,Zhou C,Kurths J 2005 Phys. Rev. E 71 16116
[9] Fang J Q,Bi Q,Li Y,Lu X B,Liu Q 2007 Sci. Chin. G 50 379
[10] Xu D,Li X,Wang X F 2007 Acta Phys. Sin. 56 1313 (in Chinese) [许 丹、李 翔、汪小帆 2007 56 1313]
[11] Xiang L Y,Liu Z X,Chen Z Q,Yuan Z Z 2008 Sci. Chin. F 51 511
[12] Song Y R,Jing G P 2009 Acta Phys. Sin. 58 5911 (in Chinese) [宋玉蓉、蒋国平 2009 58 5911]
[13] Atay F M,Jost J,Wende A 2004 Phys. Rev. Lett. 92 144101
[14] Haken H 2005 Physica D 205 1
[15] Lü L,Xia X L 2009 Acta Phys. Sin. 58 814 (in Chinese) [吕 翎、夏晓岚 2009 58 814]
[16] Checco P,Biey M,Kocarev L 2008 Chaos,Solitons and Fractals 35 562
[17] Hung Y C,Huang Y T,Ho M C,Hu C K 2008 Phys. Rev. E 77 16202
[18] Lü L,Zhang C 2009 Acta Phys. Sin. 58 1462 (in Chinese) [吕 翎、张 超 2009 58 1462]
[19] Ma X J,Wang Y,Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese) [马晓娟、王 延、郑志刚 2009 58 4426]
[20] Manne K K,Hurd A J,Kenkre V M 2000 Phys. Rev. E 61 4177
计量
- 文章访问数: 10576
- PDF下载量: 1125
- 被引次数: 0