搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双稳态结构中的1/2次谐波共振及其对隔振特性的影响

刘恩彩 方鑫 温激鸿 郁殿龙

引用本文:
Citation:

双稳态结构中的1/2次谐波共振及其对隔振特性的影响

刘恩彩, 方鑫, 温激鸿, 郁殿龙

1/2 sub-harmonic resonance in bistable structure and its effect on vibration isolation characteristics

Liu En-Cai, Fang Xin, Wen Ji-Hong, Yu Dian-Long
PDF
HTML
导出引用
  • 以典型的双稳态系统—屈曲梁结构为例, 基于等效模型, 结合解析、数值和实验手段, 研究了双稳态结构中的1/2次谐波共振特性、演化过程、参数调节规律及其对隔振特性的影响. 研究发现, 当非线性刚度系数或激励幅值增加到一定程度时, 系统会在一定带宽下产生显著的1/2次谐波共振; 随着激励幅值增加, 阻尼系统的1/2次谐波遵循“产生-增强-衰退-消失”的过程, 该过程对峰值频率和峰值传递率有重要影响; 适当提高非线性强度能有效改善双稳态结构隔振特性. 针对双稳态屈曲梁结构开展的实验验证了1/2次谐波特性和隔振特性变化规律.
    In the extensive modern applications, the low-frequency and heavy-load isolators are needed to reduce the vibration transmissions. The unique properties of nonlinear systems, such as jumping, bifurcation and chaos, provide new ideas for designing the new functional structures. Bistable system is a typical non-linear system, features highly static and low dynamic stiffness, which promises to realize a low-frequency isolator with ensuring heavy load capacity. However, more studies are necessary to clarify the sub-harmonic resonance and its generation process, parameter influences, vibration isolation characteristics of the bistable structure.By adopting the equivalent, analytical, numerical and experimental methods, we study the 1/2 sub-harmonic resonance, evolution process and its influence on the vibration isolation characteristics of the bistable structure in this paper. When the amplitude or nonlinear stiffness coefficient kn increases to a certain extent, 1/2 sub-harmonic resonance appears, where the response contains high-amplitude ω/2 component under the excitation frequency ω, so the energy is transferred from high frequency to low frequency. We study the bifurcation and varying processes of the fundamental and 1/2 sub-harmonic transmission by increasing the amplitude. At critical bifurcation amplitude, the sub-harmonic transmission rapidly increases from 0 to a large peak value. And then, it decreases gradually when the damping is absent. However, the peak value of 1/2 sub-harmonic does not cause the fundamental transmission to change suddenly. When considerable damping appears with the increase of the amplitude, 1/2 sub-harmonic does not always exist, instead, it follows an interesting “generation-enhancement-degeneration-disappearance” process. This process possesses great significance in applying the 1/2 sub-harmonic to vibration manipulation or avoiding the resonant enhancement induced by it. Moreover, in this process, both the peak frequency and the peak transmission of the bistable isolation system descend first. The optimal combination of the parameters can reduce the resonance frequency by 17.8% through increasing the driving amplitude. However, they jump to large values when 1/2 sub-harmonic plays a dominant role. Additionally, the negative stiffness k0 has a significant effect on the primary resonance characteristics: as |k0| increases under a specified excitation amplitude, the resonance peak shifts toward higher frequency and the transmission increases. Besides the main effect on the sub-harmonic resonance and the equilibrium point, the nonlinear coefficient kn also affects the peak and resonance frequency of the system, but the effect is much less than the influence caused by k0.Furthermore, the sub-harmonic resonances, bifurcations and vibration isolation characteristics of the bistable bulking beam structure are demonstrated experimentally. The experimental results show that: 1) the 1/2 sub-harmonic resonance can appear in a certain bandwidth and it is not monochromic; 2) the increase of the driving amplitude can reduce the transmission of the fundamental wave; 3) the transmission of 1/2 sub-harmonic jumps from 0 upward to a large value at a critical amplitude, and then it decreases gradually. The experimental results are consistent with the analytical and numerical results. The experiment also demonstrates the law of frequency shifting and the transmission reduction of peak values. Therefore, the appropriate increase of the amplitude can improve the vibration isolation capacity. However, sub-harmonic resonance will reduce the isolation effect. In practical engineering, the strong sub-harmonic resonance should be avoided in a nonlinear vibration isolation system.
      通信作者: 方鑫, xinfangdr@sina.com ; 温激鸿, wenjihong@vip.sina.com
    • 基金项目: 国家级-基于雪崩电离的磁阻效应及其机理研究(51875569)
      Corresponding author: Fang Xin, xinfangdr@sina.com ; Wen Ji-Hong, wenjihong@vip.sina.com
    [1]

    Fang X, Wen J, Bonello B, Yin J, Yu D 2017 Nat. Commun. 8 1288Google Scholar

    [2]

    Fang X, Wen J, Yu D, Yin J 2018 Phys. Rev. Appl. 10 054049Google Scholar

    [3]

    Fang X, Wen J, Yu D, Huang G, Yin J 2018 New J. Phys. 20 123028

    [4]

    刘树勇, 位秀雷, 王基, 俞翔 2017 振动与冲击 36 23Google Scholar

    Liu S Y, Wei X L, Wang J, Yu X 2017 J. Vib. Shock 36 23Google Scholar

    [5]

    孙舒, 曹树谦 2012 61 210505Google Scholar

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505Google Scholar

    [6]

    程凯 2018 硕士学位论文 (大连: 大连理工大学)

    Cheng K 2018 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [7]

    Shaw A D, Neild S A, Wagg D J, Weaver P M, Carrella A 2013 J. Sound Vib. 332 6265Google Scholar

    [8]

    Fang X, Wen J, Yin J, Yu D 2017 Nonlinear Dyn. 87 2677Google Scholar

    [9]

    Sergio P P, Nima T, Mark S, Just L H 2012 J. Intell. Mater. Syst. Struct. 24 1303Google Scholar

    [10]

    Zheng R, Nakano K, Hu H, Su D, Cartmell M P. 2014 J. Sound Vib. 333 2568Google Scholar

    [11]

    Harne R L, Zhang C, Li B, Wang K W 2016 J. Sound Vib. 373 205Google Scholar

    [12]

    唐玮, 王小璞, 曹景军 2014 63 240504Google Scholar

    Tang W, Wang X P, Cao J J 2014 Acta Phys. Sin. 63 240504Google Scholar

    [13]

    刘丽兰, 任博林, 朱国栋, 杨倩倩 2017 振动与冲击 36 91

    Liu L L, Ren B L, Zhu G D, Yang Q Q 2017 J. Vib. Shock 36 91

    [14]

    房轩, 李艳宁, 鄢志丹, 傅星, 胡小唐 2008 光电子·激光 19 62Google Scholar

    Fang X, Li Y N, Yan Z D, Fu X, Hu X T 2008 J. Optoelectronics · Laser 19 62Google Scholar

    [15]

    刘瑶璐, 胡宁, 邓明晰, 赵友选, 李卫彬 2017 力学进展 47 503Google Scholar

    Liu Y L, Hu N, Deng M X, Zhao Y X, Li W B 2017 Adv. Mech. 47 503Google Scholar

    [16]

    Arrieta A F, Hagedorn P, Erturk A, Inman D J 2010 Appl. Phys. Lett. 97 104102Google Scholar

    [17]

    肖锡武, 肖光华, Jacques Druez 2003 振动与冲击 22 62Google Scholar

    Xiao X W, Xiao G H, Jacques D 2003 J. Vib. Shock 22 62Google Scholar

    [18]

    Thomas H, Adrien B, Olivier D, Mickaël L 2018 Appl. Energy 226 607Google Scholar

    [19]

    孟宗, 付立元, 宋明厚 2013 62 054501Google Scholar

    Meng Z, Fu L Y, Song M H 2013 Acta Phys. Sin. 62 054501Google Scholar

    [20]

    Drummond P D, McNeil K J, Walls D F 1981 Optica Acta 28 211Google Scholar

    [21]

    陆泽琦, 陈立群 2017 力学学报 49 550Google Scholar

    Lu Z Q, Chen L Q 2017 J. Theor. Appl. Mech. 49 550Google Scholar

    [22]

    Taher M, Saif A 2000 J. Microelectromech. Syst. 9 157Google Scholar

    [23]

    Cazottes P, Fernandes A, Pouget J, Hafez M 2009 J. Mech. Design 131 101001Google Scholar

    [24]

    Senba A, Ikeda T, Ueda T 2010 Structures, Structural Dynamics, and Materials Conference Oelando, Florida, USA, April 12–15, 2010 p2744

    [25]

    Arrieta A F, Bilgen O, Friswell M I, Hagedorn P 2012 AIP Adv. 2 032118Google Scholar

    [26]

    Camescasse B, Fernandes A, Pouget J 2014 Int J. Solids Struct. 51 1750Google Scholar

    [27]

    Yang K, Harne R L, Wang K W, Huang H 2014 J. Sound Vib. 333 6651Google Scholar

    [28]

    Marvin G C, Daisuke S, Enno L, Jong H L, Hrayr S K, Alan G, James N W, Zhilin Q 2012 Heart Rhythm 9 115Google Scholar

    [29]

    Dennis J T, Brian P M 2014 Physica D 268 25Google Scholar

    [30]

    刘兴天, 黄修长, 张志谊, 华宏星 2013 机械工程学报 49 89Google Scholar

    Liu X T, Huang X C, Zhang Z Y, Hua H X 2013 J. Mech. Eng. 49 89Google Scholar

    [31]

    Jin Q, Jeffrey H L, Alexander H S 2004 J. Microelectromech. Syst. 13 137Google Scholar

  • 图 1  (a)双稳态屈曲梁试样; (b)弹簧振子模型

    Fig. 1.  (a) Prototype of bistable buckling beam; (b) spring oscillator structure.

    图 2  Simulink数值仿真模型

    Fig. 2.  Numerical simulation model in Simulink.

    图 3  解析与数值分析结果对比

    Fig. 3.  Comparison between analytical and numerical results.

    图 4  考虑1/2次谐波时的解析-数值结果对比

    Fig. 4.  Comparison between analytical and numerical results with considering 1/2 sub-harmonics.

    图 5  次谐波共振发生时的频谱

    Fig. 5.  Spectra for sub-harmonic resonance.

    图 6  解析求解的幅值变化对次谐波共振的影响 (a)对数坐标; (b)线性坐标

    Fig. 6.  Analytical results of the influence of amplitude on sub-harmonic resonance: (a) The Y coordinate of panel is logarithmic; (b) the Y coordinate of panel is linear.

    图 7  幅值变化对次谐波共振影响的数值解 (a)无阻尼结果; (b)有阻尼结果

    Fig. 7.  Numerical results of the impact of amplitude on sub-harmonic resonance: (a) Results without damping; (b) results with damping.

    图 8  无阻尼条件下幅值变化对隔振特性的影响

    Fig. 8.  Influence of amplitude on vibration isolation characteristics without damping.

    图 9  有阻尼条件下幅值变化对频率偏移(a)和共振峰峰值(b)的影响

    Fig. 9.  Influences of amplitude on frequency shifting (a) and the peaks of harmonic resonance (b) with damping.

    图 10  固定kn = 0.2 N/mm3, 负刚度系数k0变化对系统隔振特性的影响 (a)解析结果; (b)数值仿真结果

    Fig. 10.  When kn = 0.2 N/mm3, influence of k0 on vibration isolation: (a) Analytical results; (b) numerical simulations.

    图 11  固定k0 = –7.5 N/mm, 立方刚度系数kn变化对系统隔振特性的影响 (a)解析结果; (b)数值仿真结果

    Fig. 11.  When k0 = –7.5 N/mm, influence of kn on vibration isolation: (a) Analytical results; (b) numerical simulations.

    图 12  (a)实验示意图; (b)实验装置

    Fig. 12.  (a) Experimental schematic diagram; (b) experimental setups.

    图 13  频率为55 Hz的正弦激励信号下系统的响应 (a)频域响应; (b)时域响应

    Fig. 13.  Response under sinusoidal excitation signal with frequency of 55 Hz: (a) Frequency domain; (b) time domain.

    图 14  激励幅值变化对1/2次谐波共振的影响

    Fig. 14.  Influence of excitation amplitude on the 1/2 sub-harmonic resonance.

    图 15  系统40 Hz处的次谐波共振现象 (a) U = 1.251 mm时的响应和激励频谱; (b), (c)U = 1.351 mm时的响应和激励频谱; (d)U = 1.351 mm时的时域波形

    Fig. 15.  Sub-harmonic resonance phenomena at 40 Hz: (a) Response and excitation spectrum with U = 1.251 mm; (b), (c) response and excitation spectrum with U = 1.351 mm; (d) time-domain waveform with U = 1.351 mm.

    图 16  实验-数值仿真结果对比

    Fig. 16.  Comparison between numerical and experimental results.

    Baidu
  • [1]

    Fang X, Wen J, Bonello B, Yin J, Yu D 2017 Nat. Commun. 8 1288Google Scholar

    [2]

    Fang X, Wen J, Yu D, Yin J 2018 Phys. Rev. Appl. 10 054049Google Scholar

    [3]

    Fang X, Wen J, Yu D, Huang G, Yin J 2018 New J. Phys. 20 123028

    [4]

    刘树勇, 位秀雷, 王基, 俞翔 2017 振动与冲击 36 23Google Scholar

    Liu S Y, Wei X L, Wang J, Yu X 2017 J. Vib. Shock 36 23Google Scholar

    [5]

    孙舒, 曹树谦 2012 61 210505Google Scholar

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505Google Scholar

    [6]

    程凯 2018 硕士学位论文 (大连: 大连理工大学)

    Cheng K 2018 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [7]

    Shaw A D, Neild S A, Wagg D J, Weaver P M, Carrella A 2013 J. Sound Vib. 332 6265Google Scholar

    [8]

    Fang X, Wen J, Yin J, Yu D 2017 Nonlinear Dyn. 87 2677Google Scholar

    [9]

    Sergio P P, Nima T, Mark S, Just L H 2012 J. Intell. Mater. Syst. Struct. 24 1303Google Scholar

    [10]

    Zheng R, Nakano K, Hu H, Su D, Cartmell M P. 2014 J. Sound Vib. 333 2568Google Scholar

    [11]

    Harne R L, Zhang C, Li B, Wang K W 2016 J. Sound Vib. 373 205Google Scholar

    [12]

    唐玮, 王小璞, 曹景军 2014 63 240504Google Scholar

    Tang W, Wang X P, Cao J J 2014 Acta Phys. Sin. 63 240504Google Scholar

    [13]

    刘丽兰, 任博林, 朱国栋, 杨倩倩 2017 振动与冲击 36 91

    Liu L L, Ren B L, Zhu G D, Yang Q Q 2017 J. Vib. Shock 36 91

    [14]

    房轩, 李艳宁, 鄢志丹, 傅星, 胡小唐 2008 光电子·激光 19 62Google Scholar

    Fang X, Li Y N, Yan Z D, Fu X, Hu X T 2008 J. Optoelectronics · Laser 19 62Google Scholar

    [15]

    刘瑶璐, 胡宁, 邓明晰, 赵友选, 李卫彬 2017 力学进展 47 503Google Scholar

    Liu Y L, Hu N, Deng M X, Zhao Y X, Li W B 2017 Adv. Mech. 47 503Google Scholar

    [16]

    Arrieta A F, Hagedorn P, Erturk A, Inman D J 2010 Appl. Phys. Lett. 97 104102Google Scholar

    [17]

    肖锡武, 肖光华, Jacques Druez 2003 振动与冲击 22 62Google Scholar

    Xiao X W, Xiao G H, Jacques D 2003 J. Vib. Shock 22 62Google Scholar

    [18]

    Thomas H, Adrien B, Olivier D, Mickaël L 2018 Appl. Energy 226 607Google Scholar

    [19]

    孟宗, 付立元, 宋明厚 2013 62 054501Google Scholar

    Meng Z, Fu L Y, Song M H 2013 Acta Phys. Sin. 62 054501Google Scholar

    [20]

    Drummond P D, McNeil K J, Walls D F 1981 Optica Acta 28 211Google Scholar

    [21]

    陆泽琦, 陈立群 2017 力学学报 49 550Google Scholar

    Lu Z Q, Chen L Q 2017 J. Theor. Appl. Mech. 49 550Google Scholar

    [22]

    Taher M, Saif A 2000 J. Microelectromech. Syst. 9 157Google Scholar

    [23]

    Cazottes P, Fernandes A, Pouget J, Hafez M 2009 J. Mech. Design 131 101001Google Scholar

    [24]

    Senba A, Ikeda T, Ueda T 2010 Structures, Structural Dynamics, and Materials Conference Oelando, Florida, USA, April 12–15, 2010 p2744

    [25]

    Arrieta A F, Bilgen O, Friswell M I, Hagedorn P 2012 AIP Adv. 2 032118Google Scholar

    [26]

    Camescasse B, Fernandes A, Pouget J 2014 Int J. Solids Struct. 51 1750Google Scholar

    [27]

    Yang K, Harne R L, Wang K W, Huang H 2014 J. Sound Vib. 333 6651Google Scholar

    [28]

    Marvin G C, Daisuke S, Enno L, Jong H L, Hrayr S K, Alan G, James N W, Zhilin Q 2012 Heart Rhythm 9 115Google Scholar

    [29]

    Dennis J T, Brian P M 2014 Physica D 268 25Google Scholar

    [30]

    刘兴天, 黄修长, 张志谊, 华宏星 2013 机械工程学报 49 89Google Scholar

    Liu X T, Huang X C, Zhang Z Y, Hua H X 2013 J. Mech. Eng. 49 89Google Scholar

    [31]

    Jin Q, Jeffrey H L, Alexander H S 2004 J. Microelectromech. Syst. 13 137Google Scholar

  • [1] 李昀衡, 喻可, 朱天宇, 于桐, 单思超, 谷亚舟, 李志曈. 拓扑层结构中的光学双稳态及其在光神经网络中的应用.  , 2024, 73(16): 164208. doi: 10.7498/aps.73.20240569
    [2] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法.  , 2024, 73(22): 224602. doi: 10.7498/aps.73.20241135
    [3] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强.  , 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [4] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙. 单负材料异质结构中损耗诱导的场局域增强和光学双稳态.  , 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [5] 王观, 胡华, 伍康, 李刚, 王力军. 基于两级摆杆结构的超低频垂直隔振系统.  , 2016, 65(20): 200702. doi: 10.7498/aps.65.200702
    [6] 蓝春波, 秦卫阳, 李海涛. 随机激励下双稳态压电俘能系统的相干共振及实验验证.  , 2015, 64(8): 080503. doi: 10.7498/aps.64.080503
    [7] 王立明, 吴峰. 耦合方式与初始条件结构对分数阶双稳态振子环形网络同步的影响.  , 2014, 63(5): 050503. doi: 10.7498/aps.63.050503
    [8] 杨建华, 刘后广, 程刚. 一类五次方振子系统的叉形分叉及振动共振研究.  , 2013, 62(18): 180503. doi: 10.7498/aps.62.180503
    [9] 董小娟, 晏爱君. 双稳态系统中随机共振和相干共振的相关性.  , 2013, 62(7): 070501. doi: 10.7498/aps.62.070501
    [10] 王立明, 吴峰. 耦合分数阶双稳态振子的同步、反同步与振幅死亡.  , 2013, 62(21): 210504. doi: 10.7498/aps.62.210504
    [11] 张路, 钟苏川, 彭皓, 罗懋康. 乘性二次噪声驱动的线性过阻尼振子的随机共振.  , 2012, 61(13): 130503. doi: 10.7498/aps.61.130503
    [12] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. Doppler振镜正弦调制多光束激光外差二次谐波测量角度的方法.  , 2012, 61(1): 010601. doi: 10.7498/aps.61.010601
    [13] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙.  , 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [14] 蒋国平, 陶为俊, 浣石, 肖波齐. 小位移条件下混沌隔振装置的设计与研究.  , 2012, 61(7): 070503. doi: 10.7498/aps.61.070503
    [15] 陈仲生, 杨拥民. 悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究.  , 2011, 60(7): 074301. doi: 10.7498/aps.60.074301
    [16] 闫辉, 姜洪源, 刘文剑, 郝振东, Ulannov A. M.. 金属橡胶隔振器随机振动加速度响应分析.  , 2010, 59(6): 4065-4070. doi: 10.7498/aps.59.4065
    [17] 闫辉, 姜洪源, 刘文剑, Ulannov A. M.. 具有迟滞非线性的金属橡胶隔振器参数识别研究.  , 2009, 58(8): 5238-5243. doi: 10.7498/aps.58.5238
    [18] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论.  , 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
    [19] 王启明, 朱龙德, 曹其萍. 质子轰击条形结构InGaAsP/InP内调Q DH双稳态激光器.  , 1985, 34(8): 1102-1106. doi: 10.7498/aps.34.1102
    [20] 程瑞华, 栾绍金, 沈红卫, 谭维翰. InSb的光学双稳态.  , 1985, 34(9): 1212-1214. doi: 10.7498/aps.34.1212
计量
  • 文章访问数:  10266
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 修回日期:  2020-01-04
  • 刊出日期:  2020-03-20

/

返回文章
返回
Baidu
map