搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能化扶手椅型石墨烯纳米带异质结的磁器件特性

朱朕 李春先 张振华

引用本文:
Citation:

功能化扶手椅型石墨烯纳米带异质结的磁器件特性

朱朕, 李春先, 张振华

Magnetic device properties for a heterojunction based on functionalized armchair-edged graphene nanoribbons

Zhu Zhen, Li Chun-Xian, Zhang Zhen-Hua
PDF
导出引用
  • 石墨烯在未来纳米电子器件领域具有广泛的应用前景, 但是基于扶手椅型石墨烯纳米带(AGNR)的磁输运性质的研究还比较少. 本文理论上提出AGNR边缘桥接过渡金属Mn原子, 再用双F 原子(或双H原子)饱和形成特殊化学修饰的纳米带(AGNR-Mn-F2或AGNR-Mn-H2), 并运用基于第一性原理和非平衡态格林函数相结合的方法对其磁输运性质进行理论计算. 结果表明: 这两种纳米带所构成的异质结(F2-AGNR-Mn-H2)具有优良的磁器件特性, 即在很宽的偏压范围内, 能实现100%的自旋极化, 且在P(在左右电极垂直加上相同方向的磁场)和AP构型(在左右电极垂直加上相反方向的磁场)时, 分别具有单自旋和双自旋过滤效应; 同时发现, 这种异质结也具有双自旋二极管效应, 它的最大整流比可达到108. 此外, 改变开关磁场的方向, 即从一种磁构型变换为另一种磁构型时, 能产生明显的自旋阀效应, 其巨磁阻高达108%. 这意味着这种特殊的异质结能同时实现优良的自旋过滤、双自旋二极管及巨磁阻效应, 这对于发展自旋磁器件有重要意义.
    Graphene is predicted to hold a promising use for developing future miniaturized electronic devices. However, the magnetic transport properties based on the armchair-edged graphene nanoribbons (AGNRs) is less studied in currently existing work. So in this work the special chemical modified nanoribbons based on the edge of the AGNR bridged by the transition metal Mn atom and passivated subsequently by two F atoms or two H atoms (AGNR-Mn-F2 or AGNR-Mn-H2) are proposed theoretically. Our calculations from first-principle method based on the spin-polarized density functional theory combined with the non-equilibrium Green's function technique show that the heterojunction F2-AGNR-Mn-H2 consisting of such two types of nanoribbons possesses the excellent magnetic device features, namely, the spin polarization is able to reach almost 100% in a very large bias region, and under P magnetic configuration (the external magnetic fields applied perpendicularly to two electrodes are set to point to the same direction), the single spin filtering effects can be realized, while under the AP configuration (the external magnetic fields applied perpendicularly to two electrodes are set to point to the opposite directions), the dual spin filtering effects can be realized. It is also found that such a heterojunction features dual diode-like effect, and its rectification ratio is up to be 108. Additionally, changing the direction of switching magnetic field, namely, changing the magnetic configurations from one kind of case to another, would lead to an obvious spin valve effect, and the giant magnetoresistace approaches to 108%. These findings suggest that the excellent spin polarization, dual diode-like effect, and giant magnetoresistace effect can be realized simultaneously for this heterojunction, therefore, it holds good promise in developing spintronic devices.
      通信作者: 张振华, lgzzhang@sohu.com.
    • 基金项目: 国家自然科学基金(批准号: 61371065, 51302022)和湖南省自然科学基金(批准号: 12JJ3004, 14JJ2076, 2015JJ3002, 2015JJ2009, 2015JJ2013)资助的课题.
      Corresponding author: Zhang Zhen-Hua, lgzzhang@sohu.com.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61371065, 51302022) and Hunan Provincial Natural Science Foundation of China (Grant Nos. 12JJ3004, 14JJ2076, 2015JJ3002, 2015JJ2009, 2015JJ2013).
    [1]

    Huertas-Hernando D, Guinea F, Brataas A 2006 Phys. Rev. B 74 155426

    [2]

    Fischer J, Trauzettel B, Loss D2009 Phys. Rev. B 80 155401

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J 2008 Solid State Commun. 146 351

    [4]

    Kim T W, Gao Y, Acton O, Yip H L, Ma H, Chen H 2010 Appl. Phys. Lett. 97 023310

    [5]

    Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles M D 2006 Appl. Phys. Lett. 88 14210

    [6]

    Rivero P, Jimenez-Hoyos C A, Scuseria G E 2013 J. Phys. Chem. B 117 12750

    [7]

    Zeng M, Shen L, Zhou M, Zhang C, Feng Y 2011 Phys. Rev. B 83 115427

    [8]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 115274

    [9]

    Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101

    [10]

    Ren Y, Chen K Q 2010 J. Appl. Phys. 107 044514

    [11]

    Zhang X J, Chen K Q, Tang L M, Long M Q 2011 Phys. Lett. A 375 3319

    [12]

    Chen Y, Hu H F, Wang X W, Zhang Z J, Cheng C P 2015 Acta Phys.Sin. 64 196101 (in Chinese) [陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍 2015 64 196101]

    [13]

    Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937

    [14]

    Qiu M, Liew K M 2012 J. Phys. Chem C 116 11709

    [15]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 2889

    [16]

    Wagner P, Ewels C P, Adjizian J J, Magaud L, Pochet P, Roche S 2013 J. Phys. Chem. 117 26790

    [17]

    Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102 (in Chinese) [李彪, 徐大海, 曾晖 2014 63 117102]

    [18]

    Song L, Zheng X, Wang R, Zeng Z 2010 J. Phys. Chem. C 114 12145

    [19]

    Cao C, Wu M, Jiang J, Cheng H P 2010 Phys. Rev. B 81 205424

    [20]

    Cocchi C, Prezzi D, Calzolari A, Molinari E 2010 J. Phys. Chem. C 133 124703

    [21]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 62 207101]

    [22]

    Jaiswal N K, Srivastava P 2013 Nanotech 12 685

    [23]

    Jaiswal N K, Srivastava P 2011 Solid State Commun. 151 1490

    [24]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, Ouyang F P 2012 Chin. Phys. B 21 027102

    [25]

    Santos E J, Snchez Portal D, Ayuela A 2010 Phys. Rev. B 81 125433

    [26]

    Longo R C, Carrete J, Ferrer J, Gallego L J 2010 Phys. Rev. B 81 115418

    [27]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B: Condens. Matter. 82 2889

    [28]

    Qiu M, Liew K M 2011 J. Appl. Phys. 110 064319

    [29]

    Landauer R 1970 Philos. Mag. 21 863

    [30]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P 2014 Carbon 69 142

    [31]

    Zhou Y H, Zeng J, Tang L M, Chen K Q, Hu W P 2013 Org. Electron. 14 2940

  • [1]

    Huertas-Hernando D, Guinea F, Brataas A 2006 Phys. Rev. B 74 155426

    [2]

    Fischer J, Trauzettel B, Loss D2009 Phys. Rev. B 80 155401

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J 2008 Solid State Commun. 146 351

    [4]

    Kim T W, Gao Y, Acton O, Yip H L, Ma H, Chen H 2010 Appl. Phys. Lett. 97 023310

    [5]

    Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles M D 2006 Appl. Phys. Lett. 88 14210

    [6]

    Rivero P, Jimenez-Hoyos C A, Scuseria G E 2013 J. Phys. Chem. B 117 12750

    [7]

    Zeng M, Shen L, Zhou M, Zhang C, Feng Y 2011 Phys. Rev. B 83 115427

    [8]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 115274

    [9]

    Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101

    [10]

    Ren Y, Chen K Q 2010 J. Appl. Phys. 107 044514

    [11]

    Zhang X J, Chen K Q, Tang L M, Long M Q 2011 Phys. Lett. A 375 3319

    [12]

    Chen Y, Hu H F, Wang X W, Zhang Z J, Cheng C P 2015 Acta Phys.Sin. 64 196101 (in Chinese) [陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍 2015 64 196101]

    [13]

    Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937

    [14]

    Qiu M, Liew K M 2012 J. Phys. Chem C 116 11709

    [15]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 2889

    [16]

    Wagner P, Ewels C P, Adjizian J J, Magaud L, Pochet P, Roche S 2013 J. Phys. Chem. 117 26790

    [17]

    Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102 (in Chinese) [李彪, 徐大海, 曾晖 2014 63 117102]

    [18]

    Song L, Zheng X, Wang R, Zeng Z 2010 J. Phys. Chem. C 114 12145

    [19]

    Cao C, Wu M, Jiang J, Cheng H P 2010 Phys. Rev. B 81 205424

    [20]

    Cocchi C, Prezzi D, Calzolari A, Molinari E 2010 J. Phys. Chem. C 133 124703

    [21]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 62 207101]

    [22]

    Jaiswal N K, Srivastava P 2013 Nanotech 12 685

    [23]

    Jaiswal N K, Srivastava P 2011 Solid State Commun. 151 1490

    [24]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, Ouyang F P 2012 Chin. Phys. B 21 027102

    [25]

    Santos E J, Snchez Portal D, Ayuela A 2010 Phys. Rev. B 81 125433

    [26]

    Longo R C, Carrete J, Ferrer J, Gallego L J 2010 Phys. Rev. B 81 115418

    [27]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B: Condens. Matter. 82 2889

    [28]

    Qiu M, Liew K M 2011 J. Appl. Phys. 110 064319

    [29]

    Landauer R 1970 Philos. Mag. 21 863

    [30]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P 2014 Carbon 69 142

    [31]

    Zhou Y H, Zeng J, Tang L M, Chen K Q, Hu W P 2013 Org. Electron. 14 2940

  • [1] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻.  , 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [2] 杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜. Fe3GeTe2/h-BN/石墨烯二维异质结器件中的高效率自旋注入.  , 2021, 70(12): 129101. doi: 10.7498/aps.70.20202136
    [3] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应.  , 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [4] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能.  , 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [5] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间.  , 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [6] 左应红, 王建国, 朱金辉, 范如玉. 基于库仑定律的二极管空间电荷限制效应研究.  , 2012, 61(16): 165204. doi: 10.7498/aps.61.165204
    [7] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应.  , 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [8] 孙鹏, 杜磊, 何亮, 陈文豪, 刘玉栋, 赵瑛. 基于1/f 噪声变化的pn结二极管辐射效应退化机理研究.  , 2012, 61(12): 127808. doi: 10.7498/aps.61.127808
    [9] 李印峰, 封素芹, 王建勇. 交流电流对铁基纳米晶丝巨磁阻抗效应形貌的影响.  , 2011, 60(3): 037306. doi: 10.7498/aps.60.037306
    [10] 鲍丙豪, 任乃飞, 骆英. 横向偏置场作用的非晶带巨磁阻抗效应理论.  , 2011, 60(3): 037503. doi: 10.7498/aps.60.037503
    [11] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响.  , 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [12] 黄文波, 曾文进, 王 藜, 彭俊彪. 聚合物发光二极管中的负电容效应.  , 2008, 57(9): 5983-5988. doi: 10.7498/aps.57.5983
    [13] 潘海林, 程金科, 赵振杰, 何家康, 阮建中, 杨燮龙, 袁望治. LC共振型巨磁阻抗效应的研究.  , 2008, 57(5): 3230-3236. doi: 10.7498/aps.57.3230
    [14] 王文静, 袁慧敏, 姜 山, 萧淑琴, 颜世申. FeCuCrVSiB单层和多层膜的横向巨磁阻抗效应.  , 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [15] 陈卫平, 萧淑琴, 王文静, 姜 山, 刘宜华. FeCuCrVSiB多层膜巨磁阻抗效应的研究.  , 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [16] 杨全民, 王玲玲, 孙德成. 介观结构对纳米晶软磁合金巨磁阻抗效应影响的理论分析.  , 2005, 54(12): 5730-5737. doi: 10.7498/aps.54.5730
    [17] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究.  , 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [18] 张 榕, 许裕生. 非晶CoFeNiNbSiB合金的巨磁阻抗效应.  , 1999, 48(13): 175-179. doi: 10.7498/aps.48.175
    [19] 何 峻, 敦慧群, 程利智, 沈保根, 何开元, 刘宜华. 电流退火铁基薄带巨磁阻抗效应的影响.  , 1999, 48(13): 159-163. doi: 10.7498/aps.48.159
    [20] 佘卫龙, 邬起, 李庆行, 余振新, 张庆伦, 陈焕矗. Mn:KNSBN晶体中背向光散射与光学二极管效应.  , 1992, 41(10): 1706-1714. doi: 10.7498/aps.41.1706
计量
  • 文章访问数:  6178
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 修回日期:  2016-03-06
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map