搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于腔光力学系统的全光三极管的压缩特性

李森 李浩珍 许静平 朱成杰 羊亚平

引用本文:
Citation:

基于腔光力学系统的全光三极管的压缩特性

李森, 李浩珍, 许静平, 朱成杰, 羊亚平

Squeezed property of optical transistor based on cavity optomechanical system

Li Sen, Li Hao-Zhen, Xu Jing-Ping, Zhu Cheng-Jie, Yang Ya-Ping
PDF
HTML
导出引用
  • 全光二极管和全光三极管是实现全光逻辑器件的基础. 我们之前已经研究了基于腔量子电动力学的全光二极管的量子统计性质[1], 讨论了在相干光和压缩光入射的情况下, 通过二极管后输出光的压缩性质. 这里将研究拓展到全光三极管, 以基于腔光机械系统的全光三极管作为研究对象. 这种全光三极管通过改变经典抽运光的强度可以对探测光的输出进行有效调控, 并可实现光放大. 本文具体讨论以压缩光以及相干光作为探测光, 通过全光三极管后其输出光的压缩特性. 研究结果表明, 当探测光为相干光时, 不论是否工作在光放大区域, 输出光依然为相干光, 没有被压缩. 而当输入探测光为压缩光时, 在全光三极管的光放大区域, 输出光依然是压缩光, 但压缩特性受到输入光压缩特性以及系统参数的调制. 当输入探测压缩光的压缩角为0时, 输出光的压缩参量S1的最小值随输入探测光压缩系数r的增大而减小, 最小值接近压缩极限–0.25. 但当输入探测压缩光的压缩角改变时, 其对输出光的压缩参量S1,2影响很大, 压缩性会消失. 只有当压缩角θ为π的整数倍时, 输出光的压缩性最好. 这一结果在量子测量、弱信号检测等领域有着潜在的应用价值.
    All-optical diodes and all-optical transistors are the basis of all-optical logic devices. We study the quantum statistical properties of all-optical diodes based on cavity quantum electrodynamics (QED)[1], and discuss the squeezed properties of the output light after passing through the diode when coherent light and squeezed light are incident. Here we extend our research to all-optical transistor, and take all-optical transistor based on cavity optomechanical system as the research object. By changing the intensity of classical pump light, the all-optical transistor can effectively control the output of the probe light and realize optical amplification. We discuss the squeezed properties of the output light of the all-optical transistor with squeezed light and coherent light as the probe light. Our results show that when the probe light is coherent, the output light remains coherent no matter whether it works in the amplified region, and is not squeezed. When the input probe light is amplitude squeezed light, the output light is still squeezed light in the light amplification region of all-optical transistor, but the squeezed properties are modulated by the input light squeezed properties and system parameters. When the squeezed angle of the input probe squeezed light is 0°, the minimum squeezed parameter S1 of the output squeezed light decreases with the increase of the squeezed coefficient r of the input probe light, and the minimum value approaches to the squeezed limit of –0.25. But the change of squeezed angle of the input probe squeezed light changes has a great influence on the squeezed parameter S1,2 of the output light, and the squeezed properties will disappear. Only when the squeezed angle is an integer multiple of π, will the squeezed properties of the output light be best. This result has a potential application value in quantum measurement, weak signal detection, and other fields.
      通信作者: 许静平, xx_jj_pp@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 11874287, 11574229, 11774262)、国家重点基础研究发展计划(批准号: 2016YFA0302800)和上海市科学技术委员会(批准号:18JC1410900)资助的课题.
      Corresponding author: Xu Jing-Ping, xx_jj_pp@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874287, 11574229, 11774262), the National Basic Research Program of China (Grant No. 2016YFA0302800), and the Shanghai Science and Technology Committee (STCSM), China (Grant No. 18JC1410900).
    [1]

    Li H Z, Xu J P, Wang D W, Xia X W, Yang Y P, Zhu S Y 2017 Phys. Rev. A 96 013832Google Scholar

    [2]

    Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, ouwenhoven L P K, Vandersypen L M K 2006 Nature 442 766Google Scholar

    [3]

    Orrit M 2009 Nature 460 42Google Scholar

    [4]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [5]

    Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Götzinger S, Sandoghdar V 2009 Nature 460 76Google Scholar

    [6]

    Li J J, Zhu K D 2011 Nanotechnology 22 055202Google Scholar

    [7]

    Tominaga J, Mihalcea C, Büchel D, Fukuda H, Nakano T, Atoda N 2001 Appl. Phys. Lett 78 2417Google Scholar

    [8]

    Hong F Y, Xiong S J 2008 Phys. Rev. A 78 013812Google Scholar

    [9]

    Hong F Y, Xiong S J 2008 Nanoscale. Res. Lett. 3 361Google Scholar

    [10]

    Dawes A M C 2009 Phys. Status. Solidi R 3 A17Google Scholar

    [11]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

    [12]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804Google Scholar

    [13]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901Google Scholar

    [14]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803Google Scholar

    [15]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72Google Scholar

    [16]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar

    [17]

    Zhao Y, Wilson D J, Ni K K, Kimble H J 2012 Opt. Express 20 3586Google Scholar

    [18]

    Biancofiore C, Karuza M, Galassi M, Natali R, Tombesi P, Giuseppe G D, Vitali D 2011 Phys. Rev. A 84 033814Google Scholar

    [19]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [20]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [21]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [22]

    Nunnenkamp A, Børkje K, Girvin S M 2011 Phys. Rev. Lett. 107 063602Google Scholar

    [23]

    Marquardt F, Girvin S M 2009 Physics 2 40Google Scholar

    [24]

    Larson J, Horsdal M 2011 Phys. Rev. A 84 021804Google Scholar

    [25]

    Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar

    [26]

    彭堃墀 1991 物理 20 588Google Scholar

    Peng K C 1991 Physics 20 588Google Scholar

    [27]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235Google Scholar

    [28]

    Brennecke F, Donner T, Ritter S, Bourde T, Köh M, Esslinger T 2007 Nature 450 268Google Scholar

    [29]

    Masse F, Heikkilä T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [30]

    张岩, 于旭东, 邸克, 李卫, 张靖 2013 62 084204Google Scholar

    Zhang Y, Yu X D, Di K, Li W, Zhang J 2013 Acta Phys. Sin. 62 084204Google Scholar

  • 图 1  系统原理图[25]

    Fig. 1.  Schematic diagram of the system [25].

    图 2  透射率$ T={|{C}_{{{\rm o}{\rm u}{\rm t}}^{+}}/{E}_{{\rm p}{\rm r}}|}^{2}$在不同的抽运光功率下, 随探测光与腔模的频率失谐量$ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$的变化, 抽运光的频率满足蓝失谐条件$ {\varDelta }_{{\rm c}}=-{\omega }_{m}$

    Fig. 2.  The relationship between the transmissivity $ T={|{C}_{{{\rm o}{\rm u}{\rm t}}^{+}}/{E}_{{\rm p}{\rm r}}|}^{2}$ and the frequency detuning of the probe light and the cavity mode ($ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$) at different pump power. The frequency of the pump light satisfies the condition of blue detuning($ {\varDelta }_{{\rm c}}=-{\omega }_{m}$).

    图 3  在输入的探测光为压缩光的情况下, 输出光的线性部分的压缩分量$ {S}_{1}$随有效探测-腔失谐量$ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$的变化, 探测压缩光的压缩角θ为(a) 0, (b) π/4, (c) π/2 (d) 3π/4

    Fig. 3.  When the input probe light is squeeze light, the squeeze component $ {S}_{1}$ of the linear part of the output light varies with the effective detection-cavity detuning value ($ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$). The squeeze angle of the probe light is (a) 0, (b) π/4, (c) π/2 (d) 3π/4

    图 4  输出光的线性部分的压缩量$ {S}_{1}$随入射探测光的压缩幅r的变化, 入射探测光的压缩角为θ = 0, 频率与腔模共振$ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}=0$

    Fig. 4.  The variation of the squeeze parameter S1 of the linear part of the output light with the squeeze amplitude r of the incident probe light, the squeeze angle of the incident probe light is θ = 0, and the frequency is resonant with the cavity mode $ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}=0$.

    图 5  在不同入射压缩光压缩幅的情况下, 输出光中的非线性部分的压缩量$ {S}_{1}$随入射探测压缩光频率的变化. $ {\varDelta }{'}_{{\rm p}{\rm r}{\rm c}}={\omega }_{{\rm p}{\rm r}}-{\omega }_{{\rm c}}{'}$为探测光与腔模的频率失谐

    Fig. 5.  The squeeze parameter S1 of the non-linear part of the output light varies with the frequency of the incident probe squeeze light in the case of different squeeze amplitudes of the incident squeeze light, $ \varDelta{'} _{\rm{prc}}={{\omega }_{\rm{pr}}}-\omega_{\rm{c}}{'}$ is the frequency detuning between the probe light and the cavity mode.

    Baidu
  • [1]

    Li H Z, Xu J P, Wang D W, Xia X W, Yang Y P, Zhu S Y 2017 Phys. Rev. A 96 013832Google Scholar

    [2]

    Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, ouwenhoven L P K, Vandersypen L M K 2006 Nature 442 766Google Scholar

    [3]

    Orrit M 2009 Nature 460 42Google Scholar

    [4]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [5]

    Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Götzinger S, Sandoghdar V 2009 Nature 460 76Google Scholar

    [6]

    Li J J, Zhu K D 2011 Nanotechnology 22 055202Google Scholar

    [7]

    Tominaga J, Mihalcea C, Büchel D, Fukuda H, Nakano T, Atoda N 2001 Appl. Phys. Lett 78 2417Google Scholar

    [8]

    Hong F Y, Xiong S J 2008 Phys. Rev. A 78 013812Google Scholar

    [9]

    Hong F Y, Xiong S J 2008 Nanoscale. Res. Lett. 3 361Google Scholar

    [10]

    Dawes A M C 2009 Phys. Status. Solidi R 3 A17Google Scholar

    [11]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

    [12]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804Google Scholar

    [13]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901Google Scholar

    [14]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803Google Scholar

    [15]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72Google Scholar

    [16]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar

    [17]

    Zhao Y, Wilson D J, Ni K K, Kimble H J 2012 Opt. Express 20 3586Google Scholar

    [18]

    Biancofiore C, Karuza M, Galassi M, Natali R, Tombesi P, Giuseppe G D, Vitali D 2011 Phys. Rev. A 84 033814Google Scholar

    [19]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [20]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [21]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [22]

    Nunnenkamp A, Børkje K, Girvin S M 2011 Phys. Rev. Lett. 107 063602Google Scholar

    [23]

    Marquardt F, Girvin S M 2009 Physics 2 40Google Scholar

    [24]

    Larson J, Horsdal M 2011 Phys. Rev. A 84 021804Google Scholar

    [25]

    Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar

    [26]

    彭堃墀 1991 物理 20 588Google Scholar

    Peng K C 1991 Physics 20 588Google Scholar

    [27]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235Google Scholar

    [28]

    Brennecke F, Donner T, Ritter S, Bourde T, Köh M, Esslinger T 2007 Nature 450 268Google Scholar

    [29]

    Masse F, Heikkilä T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [30]

    张岩, 于旭东, 邸克, 李卫, 张靖 2013 62 084204Google Scholar

    Zhang Y, Yu X D, Di K, Li W, Zhang J 2013 Acta Phys. Sin. 62 084204Google Scholar

  • [1] 华志豪, 郭琴, 樊碧璇, 谢旻. 回音壁式耦合光力学系统中的混沌现象.  , 2023, 72(14): 144203. doi: 10.7498/aps.72.20222407
    [2] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计.  , 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [3] 周英, 谢双媛, 许静平. 磁-腔量子电动力学系统中压缩驱动导致的两体与三体纠缠.  , 2020, 69(22): 220301. doi: 10.7498/aps.69.20200838
    [4] 温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民. 低分析频率压缩光的实验制备.  , 2018, 67(2): 024207. doi: 10.7498/aps.67.20171767
    [5] 张秀龙, 鲍倩倩, 杨明珠, 田雪松. 双腔光力学系统中输出光场纠缠特性的研究.  , 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [6] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备.  , 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [7] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感.  , 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [8] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平. 腔光力学系统中的量子测量.  , 2015, 64(16): 164211. doi: 10.7498/aps.64.164211
    [9] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量.  , 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [10] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性.  , 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [11] 韩明, 谷开慧, 刘一谋, 张岩, 王晓畅, 田雪冬, 付长宝, 崔淬砺. Y模型四能级原子辅助光力学系统的多稳现象.  , 2014, 63(9): 094206. doi: 10.7498/aps.63.094206
    [12] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. Rabi模型的光场压缩.  , 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [13] 宋张代, 张林. 二次耦合光力学系统的一类高维可控自持振荡行为.  , 2013, 62(20): 204204. doi: 10.7498/aps.62.204204
    [14] 刘洪雨, 陈立, 刘灵, 明莹, 刘奎, 张俊香, 郜江瑞. 飞秒脉冲正交位相压缩光的产生.  , 2013, 62(16): 164206. doi: 10.7498/aps.62.164206
    [15] 李明, 唐涛, 陈鼎汉. V型三能级原子双模光场系统中光场压缩性质.  , 2011, 60(7): 073203. doi: 10.7498/aps.60.073203
    [16] 谢瑞华. 二能级系统中光场压缩与原子偶极压缩间的对称特性.  , 1996, 45(9): 1463-1478. doi: 10.7498/aps.45.1463
    [17] 李高翔, 彭金生. 论Jsynes-Cummings模型中原子偶极压缩和光场压缩间的关联.  , 1995, 44(10): 1670-1678. doi: 10.7498/aps.44.1670
    [18] 彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿. 双模光场压缩态的实验研究.  , 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
    [19] 刘正东, 曹昌祺, 林多樑. 腔内原有光场的振幅压缩.  , 1991, 40(11): 1792-1798. doi: 10.7498/aps.40.1792
    [20] 张卫平, 谭维翰. 激光腔内压缩态光的产生.  , 1988, 37(11): 1767-1774. doi: 10.7498/aps.37.1767
计量
  • 文章访问数:  7058
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-06-17
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回
Baidu
map