搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缝洞型介质流动模拟的多尺度分解法

张庆福 黄朝琴 姚军 李阳 严侠

引用本文:
Citation:

缝洞型介质流动模拟的多尺度分解法

张庆福, 黄朝琴, 姚军, 李阳, 严侠

Numerical simulation of fractured-vuggy porous media based on gamblets

Zhang Qing-Fu, Huang Zhao-Qin, Yao Jun, Li Yang, Yan Xia
PDF
HTML
导出引用
  • 缝洞型介质通常具有非均质性强、结构多尺度的特征. 传统数值方法在解决此类多尺度流动问题时, 难以兼顾计算精度与计算效率, 无法实际应用. 对此, 本文提出了多孔介质流体流动的多尺度分解法, 并应用于缝洞介质流动模拟, 能够大幅减小计算的复杂度, 同时可以通过控制均化程度控制计算精度. 该方法将求解空间分为若干个子空间的正交直和, 从而获得一个近线性的计算复杂度; 以分层计算的方式实现了快速计算, 另外这种方法是一种无网格方法, 具有较好的地层适应性. 同时, 采用离散缝洞模型简化缝洞结构, 进一步提高了计算效率. 详细阐述了基于多尺度分解法的多孔介质流体流动数值计算格式的建立, 重点介绍了如何在不同的层次上计算基函数. 数值结果表明, 本文提出的计算方法不仅能够准确捕捉多孔介质中的精细流动特征, 而且具有很高的计算效率, 是一种有效的流动模拟方法.
    Numerical simulation of a fractured-vuggy porous medium is a challenging problem. One reason is the coexistence of matrix, fractures and vugs on multiple scales that need to be coupled, and the other reason is that the high-resolution fractured-vuggy model may contain up to several millions of gridcells in applications, which brings severe computational challenges into the numerical methods. Therefore, the requirement for accurate and efficient technique is widely increasing. Fractured-vuggy porous medium is generally represented by triple-continuum model in which the matrix system, fracture system and vug system each are treated as a parallel continuous system. Although triple-continuum model is widely used because of its easy-implementation and high efficiency, it fails to capture the detailed flow patterns of reservoir with disconnected long fractures. Discrete fracture-vug network (DFVN) model can precisely model the fluid flow in fractures and vugs. However, the simulation of this model is deemed intractable even with the advent of supercomputers because of the large amount of calculation. In view of the fact that the multigrid method is now well known as one of the fastest method of solving elliptic problems, in this paper we introduce a nearly linear complexity multiresolution decomposition method for fluid flow in a fractured-vuggy reservoir. The detailed flow patterns are described by combing the advantages of continuum model and discrete model. That is, the homogenization theory is used to construct an equivalent permeability in each coarse grid block in which the vugs and small-scale fractures are represented by discrete fracture-vug network model. We decompose the solution space into several subspaces and then we compute the corresponding solutions of heterogeneous discrete fracture network model in each subspace. Gamblets are constructed and they are elementary solutions of hierarchical information games associated with the process of computing with partial information and limited resources. These gamblets have a natural Bayesian interpretation under the mixed strategy emerging from the game theoretic formulation. This method could realize its fast simulation by decomposing the solution space into a direct sum of linear subspaces that are orthogonal to each other. Finally, the pressure difference distribution of fractured-vuggy porous medium is obtained by combing the DFVN solutions of all subspaces. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed multiresolution decomposition method. The results show that this method is a promising method of numerically simulating the fractured-vuggy porous medium.
      通信作者: 黄朝琴, emcgroup@163.com
    • 基金项目: 国家科技重大专项(批准号: 2016ZX05060-010)、中央高校基本科研业务费(批准号: 17CX06007)和国家自然科学基金(批准号: 51404292)资助的课题.
      Corresponding author: Huang Zhao-Qin, emcgroup@163.com
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2016ZX05060-010), the Fundamental Research Fund for the Central Universities, China (Grant No. 17CX06007), and the National Natural Science Foundation of China (Grant No. 51404292).
    [1]

    Christie M A 1996 J. Pet. Sci. Technol. 48 1004Google Scholar

    [2]

    Durlofsky L J 1991 Water Resour. Res. 27 699Google Scholar

    [3]

    张庆福, 黄朝琴, 姚军, 王月英 李阳 2017 科学通报 13 85

    Zhang Q F, Huang Z Q, Yao J, Wang Y Y, Li Y 2017 Chin. Sci. Bull. 13 85

    [4]

    Efendiev Y, Galvis J, Hou T Y 2013 J. Comput. Phys. 251 116Google Scholar

    [5]

    Zhang Q, Owhadi H, Yao J, Schäfer F, Huang Z, Li Y 2019 J. Comput. Phys. DOI: 10.1016/j.jcp.2018.12.032Google Scholar

    [6]

    Juanes R 2005 Finite Elem. Anal. Des. 41 763Google Scholar

    [7]

    Zhang N, Wang Y, Sun Q, Wang Y 2018 Int. J. Heat. Mass. Tran. 116 484Google Scholar

    [8]

    Brandt A 1977 Math. Comput. 31 333Google Scholar

    [9]

    Hackbusch W 1989 Numer. Math. 56 229Google Scholar

    [10]

    Fedorenko R P 1961 Zh. Vychisl. Mat. Mat. Fiz. 1 922Google Scholar

    [11]

    Yavneh I 2006 Comput. Sci. Eng. 8 12Google Scholar

    [12]

    Engquist B, Luo E 1997 SIAM J. Numer. Anal. 34 2254Google Scholar

    [13]

    Wan W L, Chan T F, Smith B 1999 SIAM J. Sci. Comput. 21 1632Google Scholar

    [14]

    Brezina M, Cleary A J, Falgout R D, Henson V E, Jones J E, Manteuffel T A, Ruge J W 2001 SIAM J. Sci. Comput. 22 1570Google Scholar

    [15]

    Yserentant H 1986 Numer. Math. 49 379Google Scholar

    [16]

    Bank R E, Dupont T F, Yserentant H 1988 Numer. Math. 52 427Google Scholar

    [17]

    Axclsson O, Vassilevski P S 1989 Numer. Math. 56 157Google Scholar

    [18]

    Branets L V, Ghai S S, Lyons S L, Wu X H 2009 Commun. Comput. Phys. 6 1Google Scholar

    [19]

    Huang Z Q, Yao J, Li Y, Wang C, Lü X 2010 Sci. China: Technol. Sc. 53 839Google Scholar

    [20]

    吴玉树, 葛家理 1983 力学学报 19 81

    Wu Y S, Ge J L 1983 Chin. J. Theor. Appl. Mech. 19 81

    [21]

    姚军, 黄朝琴, 王子胜, 李亚军 2010 石油学报 31 815Google Scholar

    Yao J, Huang Z Q, Wang Z S, Li Y J 2010 Acta Petrolei Sinica 31 815Google Scholar

    [22]

    Huang Z Q, Yao J, Li Y, Wang C, Lv X 2011 Commun. Comput. Phys. 9 180Google Scholar

    [23]

    Owhadi H 2017 SIAM Rev. 59 99Google Scholar

    [24]

    Owhadi H, Zhang L 2017 J. Comput. Phys. 347 99Google Scholar

    [25]

    Chen Y, Durlofsky L J 2006 Transp. Porous Media 62 157Google Scholar

    [26]

    Yan X, Huang Z Q, Yao J, Li Y, Fan D 2016 15th European Conference on the Mathematics of Oil Recovery Amsterdam, the Netherlands, August 29, 2016 DOI: 10.3997/2214-4609.201601839

    [27]

    Von Neumann J, Morgenstern O 1944 Theory of Games and Economic Behavior (Princeton: Princeton University Press) pp102−110

    [28]

    Nash J 1951 Ann. Math. 54 286Google Scholar

    [29]

    Cao Z W, Liu Z F, Wang Y Z, Wang X H, Noetinger B 2018 Commun. Nonlinear Sci. 62 264Google Scholar

    [30]

    Liu Z F, Wang X H 2014 J. Comput. Phys. 278 169Google Scholar

  • 图 1  缝洞型介质示意图

    Fig. 1.  Schematic of fractured-vuggy porous medium.

    图 2  区域$\varOmega $的网格剖分示意图

    Fig. 2.  Schematic of grid partition of solution space.

    图 3  分层基函数示意图

    Fig. 3.  Illustration of gamblets $\psi _i^{\left( k \right)}$.

    图 4  基函数$\chi _i^{\left( k \right)}$示意图

    Fig. 4.  Illustration of basis functions $\chi _i^{\left( k \right)}$.

    图 5  区域$\varOmega $的多尺度解示意图

    Fig. 5.  Illustration of solution of the multiple spaces.

    图 6  (a)小尺度缝洞型油藏几何模型; (b)等效渗透率场图; (c) 多层网格系统

    Fig. 6.  (a) Geometrical model of a small-scale-fractured vuggy porous oil reservoir; (b) equivalent permeability of fractured-vuggy medium; (c) nested grid system.

    图 7  对于小尺度缝洞模型, 参考解和多重网格解对比 (a) 参考解; (b) k = 3时的多重网格解

    Fig. 7.  Comparison of reference solution and gamblets solution for a small-scale-fractured vuggy porous medium: (a) Reference solution; (b) gamblets solution with k = 3.

    图 8  长裂缝介质模型

    Fig. 8.  Geometrical model of a fractured-vuggy porous medium with a long fracture.

    图 9  对于长裂缝模型, 参考解和多重网格解对比 (a)参考解; (b) k = 3时的多重网络解; (c) k = 2时的多重网格解

    Fig. 9.  Comparison of reference solution and gamblets solution for a fractured-vuggy porous medium with a long fracture: (a) Reference solution; (b) gamblets solution with k = 3; (c) gamblets solution with k = 2.

    图 10  大尺度缝洞介质几何模型

    Fig. 10.  Geometrical model of a large-scale-fractured vuggy porous medium.

    图 11  大尺度缝洞介质模型在各层上的解

    Fig. 11.  Solutions in different levels for a large-scale-fractured vuggy porous medium.

    图 12  对于大尺度缝洞介质模型, 参考解和多重网格解对比 (a) 参考解; (b) k = 3时的多重网格解; (c) k = 2时的多重网格解; (d) k = 1时的多重网格解

    Fig. 12.  Comparison of reference solution and gamblets solution for a large-scale-fractured vuggy porous medium: (a) Reference solution; (b) gamblets solution with k = 3; (c) gamblets solution with k = 2; (d) gamblets solution with k = 1.

    图 13  沿x = 5 m的参考解和不同均化程度下多重网格解对比曲线图

    Fig. 13.  Comparison of reference solution and gamblets solution with different k when x = 5 m.

    表 1  裂缝性介质模型基本参数

    Table 1.  Parameters of fractured porous medium.

    参数名称参数值
    裂缝渗透率/${\text{μ}}{\rm m}^2$ 1 × 104
    裂缝开度/m1 × 10–3
    流体黏度/mPa·s1
    基岩渗透率/${\text{μ}}{\rm m}^2$0.001
    下载: 导出CSV

    表 2  对于小尺度缝洞模型, 不同k时的计算误差

    Table 2.  Relative error in different k for a small-scale-fractured vuggy porous medium.

    k
    234
    计算误差0.08230.01323.2549 × 10–15
    下载: 导出CSV

    表 3  对于大尺度缝洞介质模型, 不同k时的计算误差

    Table 3.  Relative error with different k for a large-scale-fractured vuggy porous medium.

    k
    123
    计算误差0.19250.08310.0141
    下载: 导出CSV
    Baidu
  • [1]

    Christie M A 1996 J. Pet. Sci. Technol. 48 1004Google Scholar

    [2]

    Durlofsky L J 1991 Water Resour. Res. 27 699Google Scholar

    [3]

    张庆福, 黄朝琴, 姚军, 王月英 李阳 2017 科学通报 13 85

    Zhang Q F, Huang Z Q, Yao J, Wang Y Y, Li Y 2017 Chin. Sci. Bull. 13 85

    [4]

    Efendiev Y, Galvis J, Hou T Y 2013 J. Comput. Phys. 251 116Google Scholar

    [5]

    Zhang Q, Owhadi H, Yao J, Schäfer F, Huang Z, Li Y 2019 J. Comput. Phys. DOI: 10.1016/j.jcp.2018.12.032Google Scholar

    [6]

    Juanes R 2005 Finite Elem. Anal. Des. 41 763Google Scholar

    [7]

    Zhang N, Wang Y, Sun Q, Wang Y 2018 Int. J. Heat. Mass. Tran. 116 484Google Scholar

    [8]

    Brandt A 1977 Math. Comput. 31 333Google Scholar

    [9]

    Hackbusch W 1989 Numer. Math. 56 229Google Scholar

    [10]

    Fedorenko R P 1961 Zh. Vychisl. Mat. Mat. Fiz. 1 922Google Scholar

    [11]

    Yavneh I 2006 Comput. Sci. Eng. 8 12Google Scholar

    [12]

    Engquist B, Luo E 1997 SIAM J. Numer. Anal. 34 2254Google Scholar

    [13]

    Wan W L, Chan T F, Smith B 1999 SIAM J. Sci. Comput. 21 1632Google Scholar

    [14]

    Brezina M, Cleary A J, Falgout R D, Henson V E, Jones J E, Manteuffel T A, Ruge J W 2001 SIAM J. Sci. Comput. 22 1570Google Scholar

    [15]

    Yserentant H 1986 Numer. Math. 49 379Google Scholar

    [16]

    Bank R E, Dupont T F, Yserentant H 1988 Numer. Math. 52 427Google Scholar

    [17]

    Axclsson O, Vassilevski P S 1989 Numer. Math. 56 157Google Scholar

    [18]

    Branets L V, Ghai S S, Lyons S L, Wu X H 2009 Commun. Comput. Phys. 6 1Google Scholar

    [19]

    Huang Z Q, Yao J, Li Y, Wang C, Lü X 2010 Sci. China: Technol. Sc. 53 839Google Scholar

    [20]

    吴玉树, 葛家理 1983 力学学报 19 81

    Wu Y S, Ge J L 1983 Chin. J. Theor. Appl. Mech. 19 81

    [21]

    姚军, 黄朝琴, 王子胜, 李亚军 2010 石油学报 31 815Google Scholar

    Yao J, Huang Z Q, Wang Z S, Li Y J 2010 Acta Petrolei Sinica 31 815Google Scholar

    [22]

    Huang Z Q, Yao J, Li Y, Wang C, Lv X 2011 Commun. Comput. Phys. 9 180Google Scholar

    [23]

    Owhadi H 2017 SIAM Rev. 59 99Google Scholar

    [24]

    Owhadi H, Zhang L 2017 J. Comput. Phys. 347 99Google Scholar

    [25]

    Chen Y, Durlofsky L J 2006 Transp. Porous Media 62 157Google Scholar

    [26]

    Yan X, Huang Z Q, Yao J, Li Y, Fan D 2016 15th European Conference on the Mathematics of Oil Recovery Amsterdam, the Netherlands, August 29, 2016 DOI: 10.3997/2214-4609.201601839

    [27]

    Von Neumann J, Morgenstern O 1944 Theory of Games and Economic Behavior (Princeton: Princeton University Press) pp102−110

    [28]

    Nash J 1951 Ann. Math. 54 286Google Scholar

    [29]

    Cao Z W, Liu Z F, Wang Y Z, Wang X H, Noetinger B 2018 Commun. Nonlinear Sci. 62 264Google Scholar

    [30]

    Liu Z F, Wang X H 2014 J. Comput. Phys. 278 169Google Scholar

  • [1] 贾静, 肖勇, 王勋年, 王帅星, 温激鸿. 内插缝Helmholtz共振腔吸声超结构的机理分析与优化设计.  , 2024, 73(11): 114301. doi: 10.7498/aps.73.20240250
    [2] 刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友. 基于变分模态分解与多尺度排列熵的生物组织变性识别.  , 2019, 68(2): 028702. doi: 10.7498/aps.68.20181772
    [3] 祁云平, 南向红, 摆玉龙, 王向贤. 基于SPPs-CDEW混合模式的亚波长单缝多凹槽结构全光二极管.  , 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [4] 陆云清, 成心怡, 许敏, 许吉, 王瑾. 基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射.  , 2016, 65(20): 204207. doi: 10.7498/aps.65.204207
    [5] 刘高洁, 郭照立, 施保昌. 多孔介质中流体流动及扩散的耦合格子Boltzmann模型.  , 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [6] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究.  , 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [7] 王佐, 刘雁, 张家忠. 过渡区微尺度流动的有效黏性多松弛系数格子Boltzmann模拟.  , 2016, 65(1): 014703. doi: 10.7498/aps.65.014703
    [8] 罗静雯, 杜平安, 任丹, 聂宝林. 一种基于BLT方程的孔缝箱体屏蔽效能计算方法.  , 2015, 64(1): 010701. doi: 10.7498/aps.64.010701
    [9] 韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰. 面向结构洞的复杂网络关键节点排序.  , 2015, 64(5): 058902. doi: 10.7498/aps.64.058902
    [10] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟.  , 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [11] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟.  , 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [12] 崔战友, 陈天宁, 许锐奇, 吴九汇. 二维开缝金属圆管带隙结构禁带特性中缝参数的研究.  , 2009, 58(7): 4752-4759. doi: 10.7498/aps.58.4752
    [13] 王华滔, 秦昭栋, 倪玉山, 张文. 不同晶体取向下纳米压痕的多尺度模拟.  , 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [14] 贺新福, 杨文, 樊胜. 论FeCr合金辐照损伤的多尺度模拟.  , 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [15] 任明星, 李邦盛, 杨 闯, 傅恒志. 微尺度型腔内液态金属流动规律模拟研究.  , 2008, 57(8): 5063-5071. doi: 10.7498/aps.57.5063
    [16] 郑立宝, 王崇愚. 单空位体系多尺度模拟.  , 2005, 54(11): 5274-5280. doi: 10.7498/aps.54.5274
    [17] 马坚伟, 杨慧珠, 朱亚平. 多尺度有限差分法模拟复杂介质波传问题.  , 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
    [18] 黄显高, 徐健学, 何岱海, 夏军利, 吕泽均. 利用小波多尺度分解算法实现混沌系统的噪声减缩.  , 1999, 48(10): 1810-1817. doi: 10.7498/aps.48.1810
    [19] 许建梅, 刘辽. 诱导引力中的虫洞解.  , 1993, 42(12): 2032-2038. doi: 10.7498/aps.42.2032
    [20] 武宇. 处理偏心圆柱形气缝导热的一个微扰方法.  , 1964, 20(2): 137-146. doi: 10.7498/aps.20.137
计量
  • 文章访问数:  7198
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-31
  • 修回日期:  2019-01-21
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map