搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型FeSe基超导材料研究进展

金士锋 郭建刚 王刚 陈小龙

引用本文:
Citation:

新型FeSe基超导材料研究进展

金士锋, 郭建刚, 王刚, 陈小龙

Research progress on FeSe-based superconducting materials

Jin Shi-Feng, Guo Jian-Gang, Wang Gang, Chen Xiao-Long
PDF
导出引用
  • FeSe基超导体作为铁基超导材料家族的重要组成部分,已经成为凝聚态物理研究的一个热点领域,对这类超导材料的探索和制备是研究其物理性质的基础.目前,对于FeSe基超导材料的探索主要集中于插层和外延单层FeSe薄膜.其中,通过插层方法获得的FeSe基超导材料具有独特的性质,且种类众多.本文介绍了近年来发现的一系列FeSe基高温超导材料,涵盖KxFe2Se2,AxNH3FeSe,LiOHFeSe和有机分子插层FeSe等,并针对各种材料,简述了其性质及影响.
    FeSe-based superconductors, as an important part of the family of iron-based superconducting materials, have attracted intensive research interest in the field of condensed matter physics. The exploration and preparation of such superconducting materials is the basis for studying their physical properties. At present, the exploration of FeSe-based superconducting materials mainly focuses on intercalated materials and epitaxial single-layer FeSe films. Among them, the intercalated FeSe-based superconducting materials have unique properties and are numerous in variety. This paper introduces a series of FeSe-based high-temperature superconducting materials discovered in recent years, covering KxFe2Se2, AxNH3FeSe, LiOHFeSe and organic molecular intercalation FeSe, etc., their properties and impacts are also briefly described.
      通信作者: 陈小龙, chenx29@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0300301,2017YFA0302902)、国家自然科学基金(批准号:51472266,51772323,51832010,51532010,51572291,91422303)和中国科学院前沿科学重点研究项目(批准号:QYZDJ-SSW-SLH013)资助的课题.
      Corresponding author: Chen Xiao-Long, chenx29@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant Nos. 2016YFA0300301 2017YFA0302902), the National Natural Science Foundation of China (Grant Nos. 51472266, 51772323, 51832010, 51532010, 51572291, 91422303), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH013).
    [1]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H, 2006 J. Am. Chem. Soc. 128 10012

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [3]

    Hosono H, Kurokib K 2015 Physica C 514 399

    [4]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. 105 14262

    [5]

    Yeh K W, Hsu H C, Huang T W, Wu P M, Huang Y L, Chen T K, Luo J Y, Wu M K 2008 J. Phys. Soc. Jpn. 77 19

    [6]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [7]

    Mou D X, Liu S Y, Jia X W, et al. 2011 Phys. Rev. Lett. 106 107001

    [8]

    Sun L, Chen X J, Guo J, et al. 2012 Nature 483 67

    [9]

    Thompson J C 1976 Electrons in Liquid Ammonia (Oxford: Oxford University Press) pp1-15

    [10]

    Nicholls D 1979 Inorganic Chemistry in Liquid Ammonia (Ireland: Elsevier Scientific Pub. Co.) pp1-17

    [11]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [12]

    Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H, Conder K 2011 J. Phys.: Condens. Matter 23 052203

    [13]

    Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J, Chen X H 2011 Phys. Rev. B 83 060512

    [14]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Eur. Phys. Lett. 94 27009

    [15]

    Liu Y, Xing Q, Dennis K W, McCallum R W, Lograsso T A 2012 Phys. Rev. B 86 144507

    [16]

    Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J, Chen X H 2011 Phys. Rev. B 83 060512

    [17]

    Ye F, Chi S, Bao W, Wang X F, Ying J J, Chen X H, Wang H D, Dong C H, Fang M 2011 Phys. Rev. Lett. 107 137003

    [18]

    Krzton-Maziopa A, Pomjakushina E, Conder K 2012 J. Cryst. Growth 360 155

    [19]

    Zhang S B, Sun Y P, Zhu X D, Zhu X B, Wang B S, Li G, Lei H C, Luo X, Yang Z R, Song W H, Dai J M 2009 Supercond. Sci. Technol. 22 015020

    [20]

    Dong S T, Lv Y Y, Zhang B B, Zhang F, Yao S, Chen Y B, Zhou J, Zhang S T, Gu Z B, Chen Y F 2015 CrystEngComm 17 6136

    [21]

    Chareev D, Osadchii E, Kuzmicheva T, Lin J Y, Kuzmichev S, Volkova O, Vasiliev A 2013 CrystEngComm 15 1989

    [22]

    Li C H, Shen B, Han F, Zhu X Y, Wen H H 2011 Phys. Rev. B 83 184521

    [23]

    Yu W, Ma L, He J B, Wang M, Xia T L, Chen G F, Bao W 2011 Phys. Rev. Lett. 106 197001

    [24]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273

    [25]

    Qian T, Wang X P, Jin W C, et al. 2011 Phys. Rev. Lett. 106 187001

    [26]

    Liu Y, Xing Q, Dennis K W, McCallum R W, Lograsso T A 2012 Phys. Rev. B 86 144507

    [27]

    Shoemaker D P, Chung D Y, Claus H, Francisco M C, Avci S, Llobet A, Kanatzidis M G 2012 Phys. Rev. B 86 184511

    [28]

    Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X, Li J Q 2011 Phys. Rev. B 83 140505

    [29]

    Ye F, Chi S, Bao W, Wang X F, Ying J J, Chen X H, Wang H D, Dong C H, Fang M H 2011 Phys. Rev. Lett. 107 137003

    [30]

    Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P, Feng D L 2011 Phys. Rev. X 1 021020

    [31]

    Shoemaker D P, Chung D Y, Claus H, Francisco M C, Avci S, Llobet A, Kanatzidis M G 2012 Phys. Rev. B 86 184511

    [32]

    Rudorff W 1965 Chimia 19 489

    [33]

    Ying T P, Chen X H, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H, Wang W Y 2012 Sci. Rep. 2 426

    [34]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15

    [35]

    Guo J G, Lei H C, Hayashi F, Hosono H 2014 Nat. Comm. 5 4756

    [36]

    Izumi M, Zheng L, Sakai Y, et al. 2015 Sci. Reports 5 9477

    [37]

    Zheng L, Izumi M, Sakai Y, et al. 2013 Phys. Rev. B 88 094521

    [38]

    Sakai Y, Zheng L, Izumi M, Teranishi K, Eguchi R, Goto H, Onji T, Araki S, Kobayashi T C, Kubozono Y 2014 Phys. Rev. B 89 144509

    [39]

    Ying T, Chen X, Wang G, Jin S, Lai X, Zhou T, Zhang H, Shen S, Wang W 2013 J. Am. Chem. Soc. 135 2951

    [40]

    Sedlmaier S J, Cassidy S J, Morris R G, Drakopoulos M, Reinhard C, Moorhouse S J, O'Hare D, Manuel P, Khalyavin D, Clarke S J 2014 J. Am. Chem. Soc. 136 630

    [41]

    Lu X, Wang N, Wu H, et al. 2014 Nat. Mater. 14 325

    [42]

    Lu X F, Wang N Z, Zhang G H, Luo X G, Ma Z M, Lei B, Huang F Q, Chen X H 2014 Phys. Rev. B 89 020507

    [43]

    Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Brueckner F, Sarkar R, Klauss H H, Johrendt D 2015 Angew. Chem. Int. Ed. 54 293

    [44]

    Sun H, Woodruff D N, Cassidy S J, Allcroft G M, Sedlmaier S J, Thompson A L, Bingham P A, Forder S D, Cartenet S, Mary N, Ramos S, Foronda F R, Williams B H, Li X, Blundell S J, Clarke S J 2015 Inorg. Chem. 54 1958

    [45]

    Woodruff D N, Schild F, Topping C V, Cassidy S J, Blandy J N, Blundell S J, Thompson A L, Clarke S J 2016 Inorg. Chem. 55 9886

    [46]

    Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515

    [47]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z J 2015 J. Am. Chem. Soc. 137 66

    [48]

    Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J, Rodriguez E E 2016 J. Mater. Chem. C 4 3934

    [49]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Comm. 9 380

    [50]

    Krzton-Maziopa A, Pomjakushina E V, Pomjakushin V Y, von Rohr F, Schilling A, Conder K 2012 J. Phys.: Condens. Matter 24 382202

    [51]

    Miao X, Terao T, Yang X, Nishiyama S, Miyazaki T, Goto H, Iwasa Y, Kubozono Y 2017 Phys. Rev. B 96 014502

    [52]

    Noji T, Hatakeda T, Hosono S, Kawamata T, Kato M, Koike Y 2014 Physica C 504 8

    [53]

    Hayashi F, Lei H, Guo J, Hosono H 2015 Inorg. Chem. 54 3346

    [54]

    Hosono S, Noji T, Hatakeda T, Kawamata T, Kato M, Koike Y 2016 J. Phys. Soc. Jpn. 85 104701

    [55]

    Jin S, Fan X, Wu X, Sun R, Wu H, Huang Q, Shi C, Xi X, Li Z, Chen X 2017 Chem. Comm. 53 9729

    [56]

    Hosono S, Noji T, Hatakeda T, Kawamata T, Kato M, Koike Y 2014 J. Phys. Soc. Jpn. 83 113704

    [57]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [58]

    Gao Z, Zeng S Y, Zhu B C 2018 Sci. China: Mater. 61 977

    [59]

    Scheidt E W, Hathwar V R, Schmitz D, Dunbar A, Scherer W, Mayr F, Tsurkan V, Deisenhofer J, Loidl A 2012 Eur. Phys. J. B 85 279

    [60]

    Hatakeda T, Noji T, Kawamata T, Kato M, Koike Y 2013 J. Phys. Soc. Jpn. 82 123705

    [61]

    Jin S, Wu X, Huang Q, Wu H, Ying T, Fan X, Sun R, Zhao L, Chen X 2016 arXiv: 1607.01103

    [62]

    Lu Z, Yusuke S, Xiao M, Saki N, Takahiro T, Ritsuko E, Hidenori G, Yoshihiro K 2016 Phys. Rev. B 94 174505

    [63]

    Zhang X, Lai X, Yi N, He J, Chen H, Zhang H, Lin J, Huang F 2015 RSC Adv. 5 38248

    [64]

    Lai X F, Lin Z P, Bu K J, Wang X, Zhang H, Li D D, Wang Y Q, Gu Y H, Lin J H, Huang F Q 2016 RSC Adv. 6 81886

  • [1]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H, 2006 J. Am. Chem. Soc. 128 10012

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [3]

    Hosono H, Kurokib K 2015 Physica C 514 399

    [4]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. 105 14262

    [5]

    Yeh K W, Hsu H C, Huang T W, Wu P M, Huang Y L, Chen T K, Luo J Y, Wu M K 2008 J. Phys. Soc. Jpn. 77 19

    [6]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [7]

    Mou D X, Liu S Y, Jia X W, et al. 2011 Phys. Rev. Lett. 106 107001

    [8]

    Sun L, Chen X J, Guo J, et al. 2012 Nature 483 67

    [9]

    Thompson J C 1976 Electrons in Liquid Ammonia (Oxford: Oxford University Press) pp1-15

    [10]

    Nicholls D 1979 Inorganic Chemistry in Liquid Ammonia (Ireland: Elsevier Scientific Pub. Co.) pp1-17

    [11]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [12]

    Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H, Conder K 2011 J. Phys.: Condens. Matter 23 052203

    [13]

    Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J, Chen X H 2011 Phys. Rev. B 83 060512

    [14]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Eur. Phys. Lett. 94 27009

    [15]

    Liu Y, Xing Q, Dennis K W, McCallum R W, Lograsso T A 2012 Phys. Rev. B 86 144507

    [16]

    Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J, Chen X H 2011 Phys. Rev. B 83 060512

    [17]

    Ye F, Chi S, Bao W, Wang X F, Ying J J, Chen X H, Wang H D, Dong C H, Fang M 2011 Phys. Rev. Lett. 107 137003

    [18]

    Krzton-Maziopa A, Pomjakushina E, Conder K 2012 J. Cryst. Growth 360 155

    [19]

    Zhang S B, Sun Y P, Zhu X D, Zhu X B, Wang B S, Li G, Lei H C, Luo X, Yang Z R, Song W H, Dai J M 2009 Supercond. Sci. Technol. 22 015020

    [20]

    Dong S T, Lv Y Y, Zhang B B, Zhang F, Yao S, Chen Y B, Zhou J, Zhang S T, Gu Z B, Chen Y F 2015 CrystEngComm 17 6136

    [21]

    Chareev D, Osadchii E, Kuzmicheva T, Lin J Y, Kuzmichev S, Volkova O, Vasiliev A 2013 CrystEngComm 15 1989

    [22]

    Li C H, Shen B, Han F, Zhu X Y, Wen H H 2011 Phys. Rev. B 83 184521

    [23]

    Yu W, Ma L, He J B, Wang M, Xia T L, Chen G F, Bao W 2011 Phys. Rev. Lett. 106 197001

    [24]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273

    [25]

    Qian T, Wang X P, Jin W C, et al. 2011 Phys. Rev. Lett. 106 187001

    [26]

    Liu Y, Xing Q, Dennis K W, McCallum R W, Lograsso T A 2012 Phys. Rev. B 86 144507

    [27]

    Shoemaker D P, Chung D Y, Claus H, Francisco M C, Avci S, Llobet A, Kanatzidis M G 2012 Phys. Rev. B 86 184511

    [28]

    Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X, Li J Q 2011 Phys. Rev. B 83 140505

    [29]

    Ye F, Chi S, Bao W, Wang X F, Ying J J, Chen X H, Wang H D, Dong C H, Fang M H 2011 Phys. Rev. Lett. 107 137003

    [30]

    Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P, Feng D L 2011 Phys. Rev. X 1 021020

    [31]

    Shoemaker D P, Chung D Y, Claus H, Francisco M C, Avci S, Llobet A, Kanatzidis M G 2012 Phys. Rev. B 86 184511

    [32]

    Rudorff W 1965 Chimia 19 489

    [33]

    Ying T P, Chen X H, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H, Wang W Y 2012 Sci. Rep. 2 426

    [34]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15

    [35]

    Guo J G, Lei H C, Hayashi F, Hosono H 2014 Nat. Comm. 5 4756

    [36]

    Izumi M, Zheng L, Sakai Y, et al. 2015 Sci. Reports 5 9477

    [37]

    Zheng L, Izumi M, Sakai Y, et al. 2013 Phys. Rev. B 88 094521

    [38]

    Sakai Y, Zheng L, Izumi M, Teranishi K, Eguchi R, Goto H, Onji T, Araki S, Kobayashi T C, Kubozono Y 2014 Phys. Rev. B 89 144509

    [39]

    Ying T, Chen X, Wang G, Jin S, Lai X, Zhou T, Zhang H, Shen S, Wang W 2013 J. Am. Chem. Soc. 135 2951

    [40]

    Sedlmaier S J, Cassidy S J, Morris R G, Drakopoulos M, Reinhard C, Moorhouse S J, O'Hare D, Manuel P, Khalyavin D, Clarke S J 2014 J. Am. Chem. Soc. 136 630

    [41]

    Lu X, Wang N, Wu H, et al. 2014 Nat. Mater. 14 325

    [42]

    Lu X F, Wang N Z, Zhang G H, Luo X G, Ma Z M, Lei B, Huang F Q, Chen X H 2014 Phys. Rev. B 89 020507

    [43]

    Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Brueckner F, Sarkar R, Klauss H H, Johrendt D 2015 Angew. Chem. Int. Ed. 54 293

    [44]

    Sun H, Woodruff D N, Cassidy S J, Allcroft G M, Sedlmaier S J, Thompson A L, Bingham P A, Forder S D, Cartenet S, Mary N, Ramos S, Foronda F R, Williams B H, Li X, Blundell S J, Clarke S J 2015 Inorg. Chem. 54 1958

    [45]

    Woodruff D N, Schild F, Topping C V, Cassidy S J, Blandy J N, Blundell S J, Thompson A L, Clarke S J 2016 Inorg. Chem. 55 9886

    [46]

    Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515

    [47]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z J 2015 J. Am. Chem. Soc. 137 66

    [48]

    Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J, Rodriguez E E 2016 J. Mater. Chem. C 4 3934

    [49]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Comm. 9 380

    [50]

    Krzton-Maziopa A, Pomjakushina E V, Pomjakushin V Y, von Rohr F, Schilling A, Conder K 2012 J. Phys.: Condens. Matter 24 382202

    [51]

    Miao X, Terao T, Yang X, Nishiyama S, Miyazaki T, Goto H, Iwasa Y, Kubozono Y 2017 Phys. Rev. B 96 014502

    [52]

    Noji T, Hatakeda T, Hosono S, Kawamata T, Kato M, Koike Y 2014 Physica C 504 8

    [53]

    Hayashi F, Lei H, Guo J, Hosono H 2015 Inorg. Chem. 54 3346

    [54]

    Hosono S, Noji T, Hatakeda T, Kawamata T, Kato M, Koike Y 2016 J. Phys. Soc. Jpn. 85 104701

    [55]

    Jin S, Fan X, Wu X, Sun R, Wu H, Huang Q, Shi C, Xi X, Li Z, Chen X 2017 Chem. Comm. 53 9729

    [56]

    Hosono S, Noji T, Hatakeda T, Kawamata T, Kato M, Koike Y 2014 J. Phys. Soc. Jpn. 83 113704

    [57]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [58]

    Gao Z, Zeng S Y, Zhu B C 2018 Sci. China: Mater. 61 977

    [59]

    Scheidt E W, Hathwar V R, Schmitz D, Dunbar A, Scherer W, Mayr F, Tsurkan V, Deisenhofer J, Loidl A 2012 Eur. Phys. J. B 85 279

    [60]

    Hatakeda T, Noji T, Kawamata T, Kato M, Koike Y 2013 J. Phys. Soc. Jpn. 82 123705

    [61]

    Jin S, Wu X, Huang Q, Wu H, Ying T, Fan X, Sun R, Zhao L, Chen X 2016 arXiv: 1607.01103

    [62]

    Lu Z, Yusuke S, Xiao M, Saki N, Takahiro T, Ritsuko E, Hidenori G, Yoshihiro K 2016 Phys. Rev. B 94 174505

    [63]

    Zhang X, Lai X, Yi N, He J, Chen H, Zhang H, Lin J, Huang F 2015 RSC Adv. 5 38248

    [64]

    Lai X F, Lin Z P, Bu K J, Wang X, Zhang H, Li D D, Wang Y Q, Gu Y H, Lin J H, Huang F Q 2016 RSC Adv. 6 81886

  • [1] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联.  , 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [2] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质.  , 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [3] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究.  , 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [4] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学.  , 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [5] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理.  , 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [6] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体.  , 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [7] 徐海超, 牛晓海, 叶子荣, 封东来. 铁基超导体系基于电子关联强度的统一相图.  , 2018, 67(20): 207405. doi: 10.7498/aps.67.20181541
    [8] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究.  , 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [9] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性.  , 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [10] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究.  , 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [11] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为.  , 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [12] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择.  , 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [13] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性.  , 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [14] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化.  , 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [15] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性.  , 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [16] 舒华兵, 刘 甦, 马 荣, 刘 楣. 第一性原理计算MgB2薄膜拉伸对超导电性的影响.  , 2007, 56(12): 7262-7265. doi: 10.7498/aps.56.7262
    [17] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性.  , 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
    [18] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究.  , 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究.  , 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [20] 陈志谦, 郑仁蓉. 金属小粒子不同自旋态超导电性统计系综研究.  , 2002, 51(7): 1604-1607. doi: 10.7498/aps.51.1604
计量
  • 文章访问数:  9802
  • PDF下载量:  712
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-12
  • 修回日期:  2018-10-09
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map