搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lipkin-Meshkov-Glick模型中的能级劈裂与宇称振荡研究

喻益湘 宋凝芳 刘伍明

引用本文:
Citation:

Lipkin-Meshkov-Glick模型中的能级劈裂与宇称振荡研究

喻益湘, 宋凝芳, 刘伍明

Energy level splitting and parity oscillation in Lipkin-Meshkov-Glick model

Yu Yi-Xiang, Song Ning-Fang, Liu Wu-Ming
PDF
导出引用
  • Lipkin-Meshkov-Glick(LMG)模型原本描述的是核物理系统,然而近年来,人们发现它广泛存在于凝聚态物理、量子信息、量子光学中,因此对其研究兴趣正在升温.本文采用精确对角化的方法以及量子微扰理论计算和分析了LMG模型在费米子数量为有限N时的能谱结构.在U(1)极限下给出它的能级精确解,发现其相互交错成渔网结构.而离开U(1)极限,系统的能级总是奇偶宇称成对地分组,形成束缚态,并且宇称会发生振荡,给出了宇称交叉点的临界塞曼场的位置.而达到Z2极限,系统能级则在零塞曼场附近形成劈裂,解析地计算了这些能隙与塞曼场之间关系,并发现对于奇数和偶数的N,各能态宇称的行为有所差别,具体而言,奇数N系统各态在零塞曼场处会发生宇称改变,而偶数N不会.
    The Lipkin-Meshkov-Glick (LMG) model originally describes a Fermionic many-body system in nuclear physics. However, in recent years, it has been widely found in condensed matter physics, quantum information systems, and quantum optics, and it is of wider and wider interest. Previous studies on this model mainly focused on the physics under the thermal dynamical limit, such as quantum phase transitions and quantum entanglement. There are also some researches about LMG model with finite size in some special limits, but the finite-size effect on energy spectrum is not very clear yet. This is the main motivation of this work. In this paper, the exact diagonalization method and the quantum perturbation theory are used to calculate and analyze the energy-level structure of the LMG model at a finite N. To solve it, we first map this model into the angular-momentum space to obtain a reduced LMG model. By this mapping, the dimension of Hilbert space is reduced to N+1 from 2N. The exact solution of its energy levels can be obtained easily in the U(1) limit where the total spin is conserved. We find that the levels are woven into a fishing-net structure in the U(1) limit. While away from the U(1) limit, the crossings between even and odd levels will open a gap, and the system's energy levels will be grouped into pairs with an odd and an even level, forming some bound states, called doublet states, and the parity of each doublet state will oscillate as the Zeeman field increases. This work gives the values of the critical Zeeman field for the parity crossings. These critical values shift as the interacting parameters and disappear at zero in the Z2 limit. In the Z2 limit, the system energy levels form splittings near the zero Zeeman field. In this article, we analytically calculate the relationship between these energy gaps and the Zeeman field. For odd and even number N, the parity of each state has a different behavior. Specifically, the ground state and the doublet excited states of the system with odd N will suffer a parity reversion at zero Zeeman field, while the states with even N will not. By tuning the interacting parameters, we also study the crossover from the U(1) limit to the Z2 limit. The parity oscillation we find in this system is a very important physical phenomenon, which also exists in some other systems like optical cavity quantum electrodynamics and magnetic molecule system.
      通信作者: 喻益湘, yyxxx@buaa.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301500)、国家自然科学基金(批准号:11434015,61227902,11611530676)和中国科学院战略性先导科技专项(B类)(批准号:XDB01020300,XDB21030300)资助的课题.
      Corresponding author: Yu Yi-Xiang, yyxxx@buaa.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grant Nos. 11434015, 61227902, 11611530676), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB01020300, XDB21030300).
    [1]

    Lipkin H J, Meshkov N, Glick A J 1965 Nucl. Phys. 62 188

    [2]

    Meshkov N, Glick A J, Lipkin H J 1965 Nucl. Phys. 62 199

    [3]

    Glick A J, Lipkin H J, Meshkov N 1965 Nucl. Phys. 62 211

    [4]

    Dusuel S, Vidal J 2004 Phys. Rev. Lett. 93 237204

    [5]

    Morrison S, Parkins A S 2008 Phys. Rev. Lett. 100 040403

    [6]

    Pan F, Draayer J P 1999 Phys. Lett. B 451 1

    [7]

    Ribeiro P, Vidal J, Mosseri R 2007 Phys. Rev. lett. 99 050402

    [8]

    Ribeiro P, Vidal J, Mosseri R 2008 Phys. Rev. E 78 021106

    [9]

    Co'G, de Leo S 2018 Int. J. Mod. Phys. E 27 1850039

    [10]

    Yu Y X, Ye J, Zhang C 2016 Phys. Rev. A 94 023830

    [11]

    Huang Y, Li T, Yin Z Q 2018 Phys. Rev. A 97 012115

    [12]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401

    [13]

    Shapere A, Wilczek F 2012 Phys. Rev. Lett. 109 160402

    [14]

    Kou S P, Liang J Q, Zhang Y B, Pu F C 1999 Phys. Rev. B 59 11792

    [15]

    Liang J Q, Mller-Kirsten H J W, Park D K, Pu F C 2000 Phys. Rev. B 61 8856

    [16]

    Jin Y H, Nie Y H, Liang J Q, Chen Z D, Xie W F, Pu F C 2000 Phys. Rev. B 62 3316

    [17]

    Larson J 2010 Europhys. Lett. 90 54001

    [18]

    ZhouY, Ma S L, Li B, Li X X, Li F L, Li P B 2017 Phys. Rev. A 96 062333

    [19]

    Chen G, Liang J Q, Jia S 2009 Opt. Express 17 19682

  • [1]

    Lipkin H J, Meshkov N, Glick A J 1965 Nucl. Phys. 62 188

    [2]

    Meshkov N, Glick A J, Lipkin H J 1965 Nucl. Phys. 62 199

    [3]

    Glick A J, Lipkin H J, Meshkov N 1965 Nucl. Phys. 62 211

    [4]

    Dusuel S, Vidal J 2004 Phys. Rev. Lett. 93 237204

    [5]

    Morrison S, Parkins A S 2008 Phys. Rev. Lett. 100 040403

    [6]

    Pan F, Draayer J P 1999 Phys. Lett. B 451 1

    [7]

    Ribeiro P, Vidal J, Mosseri R 2007 Phys. Rev. lett. 99 050402

    [8]

    Ribeiro P, Vidal J, Mosseri R 2008 Phys. Rev. E 78 021106

    [9]

    Co'G, de Leo S 2018 Int. J. Mod. Phys. E 27 1850039

    [10]

    Yu Y X, Ye J, Zhang C 2016 Phys. Rev. A 94 023830

    [11]

    Huang Y, Li T, Yin Z Q 2018 Phys. Rev. A 97 012115

    [12]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401

    [13]

    Shapere A, Wilczek F 2012 Phys. Rev. Lett. 109 160402

    [14]

    Kou S P, Liang J Q, Zhang Y B, Pu F C 1999 Phys. Rev. B 59 11792

    [15]

    Liang J Q, Mller-Kirsten H J W, Park D K, Pu F C 2000 Phys. Rev. B 61 8856

    [16]

    Jin Y H, Nie Y H, Liang J Q, Chen Z D, Xie W F, Pu F C 2000 Phys. Rev. B 62 3316

    [17]

    Larson J 2010 Europhys. Lett. 90 54001

    [18]

    ZhouY, Ma S L, Li B, Li X X, Li F L, Li P B 2017 Phys. Rev. A 96 062333

    [19]

    Chen G, Liang J Q, Jia S 2009 Opt. Express 17 19682

  • [1] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展.  , 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [2] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220270
    [3] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学.  , 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [4] 鲁公儒, 李 祥, 李培英. R-宇称破缺的相互作用研究.  , 2008, 57(2): 778-783. doi: 10.7498/aps.57.778
    [5] 潘留仙, 俞慧友, 颜家壬. KdV孤子的含时微扰理论.  , 2008, 57(3): 1316-1320. doi: 10.7498/aps.57.1316
    [6] 潘留仙, 左伟明, 颜家壬. Landau-Ginzburg-Higgs方程的微扰理论.  , 2005, 54(1): 1-5. doi: 10.7498/aps.54.1
    [7] 刘天贵, 颜家壬, 潘留仙. TDGL方程的微扰理论.  , 2002, 51(1): 6-9. doi: 10.7498/aps.51.6
    [8] 聂一行, 石云龙, 张云波, 梁九卿, 蒲富恪. 外磁场中单畴反铁磁颗粒的宏观量子效应.  , 2000, 49(8): 1580-1585. doi: 10.7498/aps.49.1580
    [9] 赵永明, 颜家壬. MKdV方程的微扰理论.  , 1999, 48(11): 1976-1982. doi: 10.7498/aps.48.1976
    [10] 文根旺. 量子激发态最陡下降微扰理论.  , 1991, 40(9): 1388-1395. doi: 10.7498/aps.40.1388
    [11] 吴璧如, 徐云飞, 郑幼凤, 胡永炎, 陆杰. 镱的奇宇称自电离谱.  , 1990, 39(7): 48-53. doi: 10.7498/aps.39.48
    [12] 文根旺. 简并基态最陡下降微扰理论.  , 1988, 37(12): 1981-1986. doi: 10.7498/aps.37.1981
    [13] 傅盘铭, 叶佩弦. 二能级系统时间分辨简并四波混频的非微扰理论.  , 1984, 33(9): 1261-1268. doi: 10.7498/aps.33.1261
    [14] 李名复, 任尚元, 茅德强. Si中深能级T2对称波函数理论.  , 1983, 32(10): 1263-1272. doi: 10.7498/aps.32.1263
    [15] 杨桂林, 徐游, 初大平, 薛登平, 翟宏如. 奇宇称晶场对Ce3+离子能级劈裂的影响.  , 1983, 32(2): 259-266. doi: 10.7498/aps.32.259
    [16] 郑兆勃. 无限次微扰理论的分块矩阵法证明.  , 1981, 30(7): 866-877. doi: 10.7498/aps.30.866
    [17] 程路. 衍射问题一级近似的微扰理论.  , 1966, 22(2): 223-232. doi: 10.7498/aps.22.223
    [18] 张宗烨, 余友文, 朱熙泉. O16偶宇称态的结构(Ⅰ).  , 1965, 21(5): 897-906. doi: 10.7498/aps.21.897
    [19] 陈式刚. 强磁场下横向输运过程的微扰理论.  , 1964, 20(7): 579-595. doi: 10.7498/aps.20.579
    [20] 刘耀阳. 0→Λ+γ过程与宇称守恒.  , 1961, 17(12): 587-591. doi: 10.7498/aps.17.587
计量
  • 文章访问数:  6981
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-31
  • 修回日期:  2018-06-12
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map