搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷暴云内电场力对起电和电荷结构的反馈作用

孙凌 郄秀书 Edward R. Mansell 陈志雄 徐燕 蒋如斌 孙竹玲

引用本文:
Citation:

雷暴云内电场力对起电和电荷结构的反馈作用

孙凌, 郄秀书, Edward R. Mansell, 陈志雄, 徐燕, 蒋如斌, 孙竹玲

Feedback effect of electric field force on electrification and charge structure in thunderstorm

Sun Ling, Qie Xiu-Shu, Edward R. Mansell, Chen Zhi-Xiong, Xu Yan, Jiang Ru-Bin, Sun Zhu-Ling
PDF
导出引用
  • 利用美国国家强风暴实验室(NSSL)发展的耦合了详细起电机制和放电过程的中尺度电耦合数值模式WRF (weather research forecasting)-Elec,在NSSL云微物理双参数化方案中增加了电场力对霰、雹粒子降落末速度的影响,完善了WRF-Elec模式的物理过程,建立了双向耦合WRF-Elec模式.利用改进后的WRF-Elec模式,通过敏感性数值实验,定量分析了雷暴云内电场力对起电和电荷结构的反馈作用.结果发现:雷暴云发展旺盛阶段,由于电场力作用,霰、雹粒子质量加权平均降落末速度的瞬时变化极值可以超过4 m/s,但这种情况仅出现在雷暴云内局部区域,并且维持时间较短;电场力对直径小且数浓度较低的霰和雹粒子影响较大,但这种影响不是由单一物理量决定,而是由电场强度和霰、雹粒子的电荷密度、极性以及粒子的直径与数浓度共同决定;电场力通过对霰、雹粒子降落末速度的调整,增强了雷暴云内感应、非感应起电率,且前者远大于后者,云内局部产生-0.6–1.2 nC/m3总电荷密度的变化,从而使电荷结构重新分布,局部垂直电场强度增强5 kV/m,总闪电数增加,与此同时,雷暴云内降水粒子的微观增长过程也发生改变.总体上,电场力对雷暴云起电过程的作用为正反馈,电场力对雷暴云电荷结构的反馈作用不可忽略.
    The electrification within the thunderstorm, caused mainly by inductive and noninductive charging mechanism, can produce strong local electric field inside the thundercloud. Due to the resulting electric field force, the vertical velocity of the graupel and hail particles which are the main in-cloud charge carriers, would change. As a feedback, this variation could affect the original electrification and charge structure of the thunderstorm. In order to investigate such a feedback effect, a weather research forecasting (WRF) model coupled with explicit lightning physics including charging and discharge lightning scheme (hereafter WRF-Elec) is employed and modified in this study. We derive the formulas for calculating the mass-weighted mean terminal velocities of graupel and hail under the balance among gravity, resistance and electric field force. Then, the National Sever Storm Laboratory (NSSL) two-moment bulk microphysics scheme is modified by adding the calculating code with consideration of electric field force (EFF) acting on the fall speed of graupel and hail particles. Eventually, the two-coupled WRF-Elec is developed successfully.#br#Based on this modified WRF-Elec, sensitivity tests are conducted to quantitatively investigate the influences of EFF on the thunderstorm electrification and the corresponding charge structure in an idealized supercell case. The results show that during the rapid enhancement of the thunderstorm, the grid-scale mass-weighted mean fall speed of graupel and hail vary significantly in consideration of EFF, with the maximum values both exceeding 4 m/s, although this situation occurs within a local area and lasts a short time. The action of EFF tends to enhance the falling of graupel and weaken the falling of hail. The influences of EFF on those graupel and hail particles with smaller-size and lower number concentration are stronger, as determined by composite factors of the strength and polarity of electric field, the diameter and number concentration of graupel and hail, and their charge density and polarity as well. The adjustment of the terminal velocity of the graupel and hail in consideration of EFF, eventually results in increasing the rate of both inductive and noninductive charge separation, where the inductive charging is the much more significant one. This leads to a grid-scale total charge density variation of -0.6-1.2 nC/m3 and a redistribution of the charge structure in the thunderstorm, and correspondingly, an increase of the local vertical electric field by 5 kV/m, thus producing stronger lightning eventually. In addition, due to the effect of electric field force, the mass mixing ratio of four precipitation particles including graupel, hail, ice crystal and snow is changed in the ranges of -0.09-0.24, -0.16-0.04, -0.04-0.05, and -0.01-0.006 g/kg, respectively. Therefore, the electric field force in thunderstorm affects not only the electrification and charge structure, but also the microphysical process. Generally, the overall influence of EFF on electrification tends to be positive, and the feedback effect of EFF on the charge structure should not be neglected.
      通信作者: 郄秀书, qiex@mail.iap.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB441401)和国家自然科学基金(批准号:41630425,41475002)资助的课题.
      Corresponding author: Qie Xiu-Shu, qiex@mail.iap.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB441401) and the National Natural Science Foundation of China (Grant Nos. 41630425, 41475002).
    [1]

    Takahashi T 1978 J. Atmos. Sci. 35 1536

    [2]

    Saunders C P R, Keith W D, Mitzeva R P 1991 J. Geophys. Res. 96 11007

    [3]

    Li W L, Liu D X, Qie X S, Fu S M, Duan S, Chen Y C 2012 Acta Phys. Sin. 61 059202 (in Chinese) [李万莉, 刘冬霞, 郄秀书, 傅慎明, 段树, 陈羿辰 2012 61 059202]

    [4]

    Fierro A O, Mansell E R, MacGorman D R, Ziegler C L 2013 Mon. Wea. Rev. 141 2390

    [5]

    Mansell E R, MacGorman D R, Ziegler C L, Straka J M 2005 J. Geophys. Res. 110 D12101

    [6]

    Mansell E R, Ziegler C L, Bruning E C 2010 J. Atmos. Sci. 67 171

    [7]

    Guo F X, Li Y, Huang Z C, Wang M F, Zeng F H, Lian C H, Mu Y J 2017 Sci. China: Earth Sci. 60 2204

    [8]

    Tan Y B, Liang Z W, Shi Z, Zhu J R, Guo X F 2014 Sci. China: Earth Sci. 57 2125

    [9]

    Xu L T, Zhang Y J, Liu H Y, Zheng D, Wang F 2016 Sci. China: Earth Sci. 59 1414

    [10]

    Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方 2009 58 6616]

    [11]

    Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨静, 郄秀书, 王建国, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 57 1968]

    [12]

    MacGorman D R, Straka J M, Ziegler C L 2011 J. Appl. Meteor. 40 459

    [13]

    Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Wang J F, Liu D X 2011 Acra Phys. Sin. 60 079201 (in Chinese) [蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 王俊芳, 刘冬霞 2011 60 079201]

    [14]

    Cao D J, Qie X S, Duan S, Xuan Y J, Wang D F 2012 Acta Phys. Sin. 61 069202 (in Chinese) [曹冬杰, 郄秀书, 段树, 宣越建, 王东方 2012 61 069202]

    [15]

    Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 61 039203]

    [16]

    Wang J F, Qie X S, Lu H, Zhang J L, Yu X X, Shi F 2012 Acta Phys. Sin. 61 159202 (in Chinese) [王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰 2012 61 159202]

    [17]

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201 (in Chinese) [刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 62 219201]

    [18]

    Vonnegut B 1963 Meteorol. Monogr. 27 24

    [19]

    Willams E R, Lhermitte R M 1983 J. Geophys. Res. 88 10984

    [20]

    Latham J, Saunders C P R 1967 J. Glaciol. 6 505

    [21]

    Saunders C P R, Wahab N M A 1975 J. Met. Soc. Japan 53 121

    [22]

    Schlamp R J, Grover S N, Pruppacher H R, Hamielec A E 1976 J. Atmos. Sci. 33 1747

    [23]

    Rawlings F 1982 Quart. J. Roy. Meteor. Soc. 108 779

    [24]

    Sun A P, Zhang Y J, Yan M H 2004 Plateau Meteorol. 23 26 (in Chinese) [孙安平, 张义军, 言穆弘 2004 高原气象 23 26]

    [25]

    Zhang Y J, Sun A P, Yan M H, Guo F X, Qie X S, Huang M Y 2004 Chin. J. Geophys. 47 25 (in Chinese) [张义军, 孙安平, 言穆弘, 郭凤霞, 郄秀书, 黄美元 2004 地球 47 25]

    [26]

    Zhou Z M, Guo X L, Cui C G, Li X Y, Xu G R, Zhao Y C 2011 Acta Meteorol. Sin. 69 830 (in Chinese) [周志敏, 郭学良, 崔春光, 李兴宇, 徐桂荣, 赵玉春 2011 气象学报 69 830]

    [27]

    Brooks I M, Saunders C P R, Mitzeva R P, Peck S L 1997 Atmos. Res. 43 277

    [28]

    Saunders C P R, Peck S L 1998 J. Geophys. Res. 103 13949

    [29]

    Dendy J E 1987 SIAM J. Sci. Stat. Comput. 8 673

    [30]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055

    [31]

    Ziegler C L, MacGorman D R 1994 J. Atmos. Sci. 51 833

    [32]

    MacGorman D R, Strake J M, Ziegler C L 2001 J. Appl. Meteorol. 40 459

    [33]

    Mansell E R, Ziegler C L 2013 J. Atmos. Sci. 70 2032

    [34]

    Weisman M L, Klemp J B 1982 Mon. Wea. Rev. 110 504

    [35]

    Connolly P J, Saunders C P R, Gallagher M W, Bower K N, Flynn M J, Choularton T W, Whiteway J, Lawson R P 2005 Quart. J. Roy. Meteor. Soc. 131 1695.

    [36]

    Lawson R P, Baker B A, Pilson B L 2003 30th International Symposium on Remote Sensing of Environment Honolulu, Hawaii, November 10-14, 2003 p707

    [37]

    Pedernera D A, Ávila E E 2018 J. Geophys. Res. 123 1244

  • [1]

    Takahashi T 1978 J. Atmos. Sci. 35 1536

    [2]

    Saunders C P R, Keith W D, Mitzeva R P 1991 J. Geophys. Res. 96 11007

    [3]

    Li W L, Liu D X, Qie X S, Fu S M, Duan S, Chen Y C 2012 Acta Phys. Sin. 61 059202 (in Chinese) [李万莉, 刘冬霞, 郄秀书, 傅慎明, 段树, 陈羿辰 2012 61 059202]

    [4]

    Fierro A O, Mansell E R, MacGorman D R, Ziegler C L 2013 Mon. Wea. Rev. 141 2390

    [5]

    Mansell E R, MacGorman D R, Ziegler C L, Straka J M 2005 J. Geophys. Res. 110 D12101

    [6]

    Mansell E R, Ziegler C L, Bruning E C 2010 J. Atmos. Sci. 67 171

    [7]

    Guo F X, Li Y, Huang Z C, Wang M F, Zeng F H, Lian C H, Mu Y J 2017 Sci. China: Earth Sci. 60 2204

    [8]

    Tan Y B, Liang Z W, Shi Z, Zhu J R, Guo X F 2014 Sci. China: Earth Sci. 57 2125

    [9]

    Xu L T, Zhang Y J, Liu H Y, Zheng D, Wang F 2016 Sci. China: Earth Sci. 59 1414

    [10]

    Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方 2009 58 6616]

    [11]

    Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨静, 郄秀书, 王建国, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 57 1968]

    [12]

    MacGorman D R, Straka J M, Ziegler C L 2011 J. Appl. Meteor. 40 459

    [13]

    Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Wang J F, Liu D X 2011 Acra Phys. Sin. 60 079201 (in Chinese) [蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 王俊芳, 刘冬霞 2011 60 079201]

    [14]

    Cao D J, Qie X S, Duan S, Xuan Y J, Wang D F 2012 Acta Phys. Sin. 61 069202 (in Chinese) [曹冬杰, 郄秀书, 段树, 宣越建, 王东方 2012 61 069202]

    [15]

    Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 61 039203]

    [16]

    Wang J F, Qie X S, Lu H, Zhang J L, Yu X X, Shi F 2012 Acta Phys. Sin. 61 159202 (in Chinese) [王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰 2012 61 159202]

    [17]

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201 (in Chinese) [刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 62 219201]

    [18]

    Vonnegut B 1963 Meteorol. Monogr. 27 24

    [19]

    Willams E R, Lhermitte R M 1983 J. Geophys. Res. 88 10984

    [20]

    Latham J, Saunders C P R 1967 J. Glaciol. 6 505

    [21]

    Saunders C P R, Wahab N M A 1975 J. Met. Soc. Japan 53 121

    [22]

    Schlamp R J, Grover S N, Pruppacher H R, Hamielec A E 1976 J. Atmos. Sci. 33 1747

    [23]

    Rawlings F 1982 Quart. J. Roy. Meteor. Soc. 108 779

    [24]

    Sun A P, Zhang Y J, Yan M H 2004 Plateau Meteorol. 23 26 (in Chinese) [孙安平, 张义军, 言穆弘 2004 高原气象 23 26]

    [25]

    Zhang Y J, Sun A P, Yan M H, Guo F X, Qie X S, Huang M Y 2004 Chin. J. Geophys. 47 25 (in Chinese) [张义军, 孙安平, 言穆弘, 郭凤霞, 郄秀书, 黄美元 2004 地球 47 25]

    [26]

    Zhou Z M, Guo X L, Cui C G, Li X Y, Xu G R, Zhao Y C 2011 Acta Meteorol. Sin. 69 830 (in Chinese) [周志敏, 郭学良, 崔春光, 李兴宇, 徐桂荣, 赵玉春 2011 气象学报 69 830]

    [27]

    Brooks I M, Saunders C P R, Mitzeva R P, Peck S L 1997 Atmos. Res. 43 277

    [28]

    Saunders C P R, Peck S L 1998 J. Geophys. Res. 103 13949

    [29]

    Dendy J E 1987 SIAM J. Sci. Stat. Comput. 8 673

    [30]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055

    [31]

    Ziegler C L, MacGorman D R 1994 J. Atmos. Sci. 51 833

    [32]

    MacGorman D R, Strake J M, Ziegler C L 2001 J. Appl. Meteorol. 40 459

    [33]

    Mansell E R, Ziegler C L 2013 J. Atmos. Sci. 70 2032

    [34]

    Weisman M L, Klemp J B 1982 Mon. Wea. Rev. 110 504

    [35]

    Connolly P J, Saunders C P R, Gallagher M W, Bower K N, Flynn M J, Choularton T W, Whiteway J, Lawson R P 2005 Quart. J. Roy. Meteor. Soc. 131 1695.

    [36]

    Lawson R P, Baker B A, Pilson B L 2003 30th International Symposium on Remote Sensing of Environment Honolulu, Hawaii, November 10-14, 2003 p707

    [37]

    Pedernera D A, Ávila E E 2018 J. Geophys. Res. 123 1244

  • [1] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性.  , 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] 余海, 张廷龙, 陈阳, 吕伟涛, 赵小平, 陈洁. 热带沿海地区一次局地雷暴消散阶段的云内电场.  , 2021, 70(10): 109201. doi: 10.7498/aps.70.20201634
    [4] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体.  , 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [5] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱.  , 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [6] 李宏宇, 符淙斌, 郭维栋, 马芳. 干旱区不同下垫面能量分配机理及对微气候反馈的研究.  , 2015, 64(5): 059201. doi: 10.7498/aps.64.059201
    [7] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性.  , 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [8] 张兆慧, 李海鹏, 毛仕春. 有机分子的结构与排列方式对原子电荷分布及静电作用的影响.  , 2014, 63(19): 198701. doi: 10.7498/aps.63.198701
    [9] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究.  , 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [10] 刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘. 飑线系统中的闪电辐射源分布特征及云内电荷结构讨论.  , 2013, 62(21): 219201. doi: 10.7498/aps.62.219201
    [11] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究.  , 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [12] 何建勇, 隆正文, 龙超云, 蔡绍洪. 电场作用下CaS的分子结构和电子光谱.  , 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [13] 李晓兵, 赵祥永, 汪尧进, 王飞飞, 陈超, 罗豪甦. 由BaTiO3晶体结构相变时的介电特性研究其电场作用下的偶极子偏转路径.  , 2009, 58(6): 4225-4229. doi: 10.7498/aps.58.4225
    [14] 阮 文, 罗文浪, 张 莉, 朱正和. 外电场作用下苯乙烯分子结构和电子光谱.  , 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [15] 夏明霞, 颜 宁, 李红星, 宁乃东, 蔺西伟, 谢 中. 外加电场作用下碳纳米管结构稳定性及结构修饰研究.  , 2007, 56(1): 113-116. doi: 10.7498/aps.56.113
    [16] 徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和. 外电场作用下SiO电子结构特性研究.  , 2007, 56(10): 5704-5708. doi: 10.7498/aps.56.5704
    [17] 黄晓菁, 何素贞, 吴晨旭. 金属纳米结构表面吸附的CO分子在外电场中的相互作用.  , 2006, 55(5): 2454-2458. doi: 10.7498/aps.55.2454
    [18] 方 健, 乔 明, 李肇基. 电荷非平衡super junction结构电场分布.  , 2006, 55(7): 3656-3663. doi: 10.7498/aps.55.3656
    [19] 何文平, 封国林, 高新全, 李建平. 无反馈作用下混沌系统的振幅死亡.  , 2006, 55(11): 6192-6196. doi: 10.7498/aps.55.6192
    [20] 戴建华, 张洪钧. 在具有竞争相互作用的混合光学系统中反馈强度对振荡模式的影响.  , 1991, 40(3): 365-374. doi: 10.7498/aps.40.365
计量
  • 文章访问数:  7132
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-21
  • 修回日期:  2018-05-08
  • 刊出日期:  2019-08-20

/

返回文章
返回
Baidu
map