搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究

秦京运 舒群威 袁艺 仇伟 肖立华 彭平 卢国松

引用本文:
Citation:

Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究

秦京运, 舒群威, 袁艺, 仇伟, 肖立华, 彭平, 卢国松

First-principles investigation on electronic structure and solar radiation shielding performance of Tl0.33WO3

Qin Jing-Yun, Shu Qun-Wei, Yuan Yi, Qiu Wei, Xiao Li-Hua, Peng Ping, Lu Guo-Song
PDF
HTML
导出引用
  • 节能减排已成为当今社会发展的主题, 对节约能源、提高太阳能的高效综合利用的新型窗用透明隔热材料的理论设计和研究尤其重要. 本文采用基于密度泛函理论的计算方法, 研究了六方相三氧化钨Tl掺杂前、后的晶格参数、电子能带结构、形成能和光学性质. 研究结果表明, Tl掺杂后晶格体积增大, 系统能量降为负值, 体系具有更好的稳定性; 掺杂后电子能带结构发生很大的变化, 但材料仍保持n型电导率; 随之, 其光学性质也发生改变, 掺杂前h-WO3无近红外吸收性能, 掺杂后的Tl0.33WO3具有很强的近红外吸收性能. 在此基础上研究了Tl掺杂h-WO3前、后的太阳辐射屏蔽性能, 掺杂前无太阳辐射屏蔽性能; 掺杂后的Tl0.33WO3薄膜具有可见光高透明、近红外屏蔽的性能. 计算结果为Tl掺杂h-WO3在窗用透明隔热材料方面的研究提供了理论依据.
    With energy-saving and emission-reduction have become the theme of today's social development, the theoretical design and research of novel transparent heat insulation materials for windows, which can save energy and improve the comprehensive utilization efficiency of solar energy, are particularly crucial.In this paper, a calculation method based on DFT(density functional theory) is used to study the lattice parameters (the geometric structure of h-WO3 crystal was optimized by calculation) electronic band structure, formation energy, and optical properties of pure hexagonal phase tungsten trioxide(h-WO3) before and after doping with Tl. The calculated results indicate that the lattice volume increases and the total system energy decreases to a negative value after Tl-doped h-WO3, while the system has better stability; The electron band structure changes greatly after doping, but the material still maintains n-type conductivity. In the meantime, the optical properties of the material also changed, h-WO3 had no near-infrared absorption performance before Tl-doping, and Tl0.33WO3 after Tl-doped had strong near-infrared absorption performance. On this basis, the solar radiation shielding performance of h-WO3 before and after Tl doping has been studied. The results show that pure h-WO3 has no solar radiation shielding performance, while Tl0.33WO3 thin films after Tl-doped h-WO3 have high transparency in visible light region and strong absorption in near infrared radiation. The calculation results provide a theoretical basis for the application of transparent thermal insulating material for windows of Tl-doped h-WO3.
      通信作者: 肖立华, xiaolihua@git.edu.cn
    • 基金项目: 国家级-国家自然科学基金((61751501, 51776046))
      Corresponding author: Xiao Li-Hua, xiaolihua@git.edu.cn
    [1]

    Saito M 1997 Convertec 25 7

    [2]

    Muromachi T, Tsujino T, Kamitani K, Maeda K 2006 J. Sol-Gel Sci. Technol. 40 267Google Scholar

    [3]

    Xiao L H, Su Y C, Qiu W, Liu Y K, Ran J Y, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 Ceram. Int. 42 14278Google Scholar

    [4]

    Xiao L H, Su Y C, Ran J Y, Liu Y K, Qiu W, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 J. Appl. Phys. 119 164903Google Scholar

    [5]

    Xiao L H, Su Y C, Chen H Y, Liu S, Jiang M, Peng P, Liu S 2011 Appl. Phys. Lett. 99 061906Google Scholar

    [6]

    Xiao L H, Su Y C, Qiu W, Ran J Y, Liu Y K, Wu J M, Lu F H, Shao F, Peng P 2016 Appl. Phys. Lett. 109 193906Google Scholar

    [7]

    Takeda H, Adachi K 2007 J. Am. Ceram. Soc. 90 4059

    [8]

    Yao Y, Zhang L, Chen Z, Cao C, Gao Y, Luo H 2018 Ceram. Int. 44 13469Google Scholar

    [9]

    Mattox T M, Bergerud A, Agrawal A, Milliron D. J 2014 Chem. Mater. 26 1779Google Scholar

    [10]

    Guo C S, Yin S, Yan M., Sato T 2011 J. Mater. Chem 21 5099Google Scholar

    [11]

    Guo C S, Yin S, Sato T 2012 J. Am. Ceram. Soc. 95 1634Google Scholar

    [12]

    Guo C S, Yin S, Dong Q 2013 J. Nanosci. Nanotechnol. 13 3236Google Scholar

    [13]

    Adachi K, Asahi T 2012 J. Mater. Res. 27 965Google Scholar

    [14]

    Yu Z Y, Yao Y J, Yao J N, Zhang L M, Chen Z, Gao Y F, Luo H J 2017 J. Mater. Chem. A 5 6019Google Scholar

    [15]

    Lee J S, Liu H C, Peng G D, Tseng Y 2017 J. Cryst. Growth 465 27Google Scholar

    [16]

    Yang C X, Chen J F, Zeng X F, Cheng D J, Cao D P 2014 Ind. Eng. Chem. Res. 53 17981Google Scholar

    [17]

    Yang C X, Chen J F, Zeng X F, Cheng D J, Huang H F, Cao D P 2016 Nanotechnology 27 075203Google Scholar

    [18]

    Lee Y, Lee T, Jang W, Soon A 2016 Chem. Mater. 28 4528Google Scholar

    [19]

    Yoshio S, Adachi K 2018 Mater. Res. Express 6 026548Google Scholar

    [20]

    Xu Q Y, Xiao L H, Ran J Y, Tursun R, Zhou G D, Deng L L, Tang D S, Shu Q W, Qin J Y, Lu G S, Peng P 2018 J. Appl. Phys. 124 193102Google Scholar

    [21]

    McColm I J, Steadman R, Wilson S J 1978 J. Solid State Chem. 23 33Google Scholar

    [22]

    Gao T, Jelle B P 2013 J. Phys. Chem. C 117 13753Google Scholar

    [23]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717Google Scholar

    [24]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, PedersonM R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B 2003 Chem. Mater. 15 4039Google Scholar

    [27]

    Bechinger C, Wirth E, Leiderer P 1996 Appl. Phys. Lett. 68 2834Google Scholar

    [28]

    Barton D G, Shtein M, Wilson R D, Soled S L, Iglesia E 1999 J. Phys. Chem. B 103 630Google Scholar

    [29]

    Gonzalez-Borrero P P, Sato F, Medina A N, Baesso M L, Bento A C, Baldissera G, Persson C, Niklasson G A, Granqvist C G, Ferreira da Silva A 2010 Appl. Phys. Lett. 96 061909Google Scholar

    [30]

    Liu J X, Ando Y, Dong X L, Shi F, Yin S, Adachi K, Chonan T, Tanaka A, Sato T, 2010 J. Solid State Chem. 183 2456Google Scholar

    [31]

    Dostal A, Kauschka G, Reddy S J, Scholz F 1996 J. Electroanal. Chem. 406 155Google Scholar

    [32]

    Gerand B, Novogorocki G, Guenot J, Figlarz M, 1979 J. Solid State Chem. 29 429Google Scholar

    [33]

    Migas D B, Shaposhnikov V L, Rodin V N, Borisenko V E 2010 J. Appl. Phys. 108 093713Google Scholar

    [34]

    徐金荣, 王影, 朱兴凤, 李平, 张莉 2012 61 207103Google Scholar

    Xu J R, Wang Y, Zhu X F, Li P, Zhang L 2012 Acta Phys. Sin. 61 207103Google Scholar

    [35]

    周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍 2019 68 037101Google Scholar

    Zhou S W, Peng P, Chen W Q, Yu M, H, Guo H, Yuan Z 2019 Acta Phys. Sin. 68 037101Google Scholar

    [36]

    Granqvist C G 2012 Sol. Energy Mater. Sol. Cells 99 1Google Scholar

    [37]

    Kamal H, Akl A A, Abdel-Hady K 2004 Physica B 349 192Google Scholar

    [38]

    沈学础 1992 半导体光学性质 (北京: 科学出版社) 第 24 页

    Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)

    [39]

    褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第 165 页

    Chu J H 2005 Physics of Narrow Gap Semiconductors (Beijing: Science Press) (in Chinese)

    [40]

    Guo C S, Yin S, Huang L J, Yang L, Sato T 2011 Chem. Commun. 47 8853Google Scholar

  • 图 1  Tl掺杂h-WO3的2 × 2 × 1超晶胞俯视图

    Fig. 1.  Top view of the 2 × 2 × 1 supercell of Tl-doped h-WO3

    图 2  纯h-WO3的能带结构和态密度: (a)能带结构; (b)总态密度; (c) W的分态密度; (d) O1的态密度; (e) O2的分态密度

    Fig. 2.  Energy band structure and DOS of pure h-WO3: (a) Energy band structure; (b) TDOS of h-WO3; (c) PDOS of W; (d) PDOS of O1; (e) PDOS of O2

    图 3  Tl掺杂h-WO3(Tl0.33WO3)能带结构和态密度: (a)能带结构; (b)总态密度; (c) Tl的分态密度; (d) W的分态密度; (e) O1的态密度; (f) O2的分态密度

    Fig. 3.  Energy band structure and DOS of Tl0.33WO3: (a) Energy band structure; (b) TDOS of Tl0.33WO3; (c) PDOS of Tl; (d) PDOS of W; (d) PDOS of O1; (e) PDOS of O2

    图 4  h-WO3和Tl0.33WO3的光学性质: (a)介电函数虚部; (b)反射谱; (c)吸收谱

    Fig. 4.  Optical performance of h-WO3 and Tl0.33WO3: (a) Imaginary part of the dielectric function; (b) reflectivity; (c) absorption spectrum

    图 5  h-WO3和Tl0.33WO3薄膜的理论透过率: (a)致密薄膜; (b)涂层薄膜

    Fig. 5.  Theoretical transmittance of h-WO3 and Tl0.33WO3 films: (a) The compacted film; (b) the coated film

    表 1  Tl掺杂六方相WO3前、后的晶格参数、带隙与形成能

    Table 1.  Lattice parameters, band gap and formation energy of pure h-WO3 before and after Tl-doped

    a b c Eg/eV Ef/eV
    h-WO3 (Expt.) 7.298[1] 7.298[1] 3.899[32]
    h-WO3 (Calc.) 7.4403 7.4403 3.8240 0.62
    7.438[2] 7.438[2] 3.827[33] 0.66
    Tl0.33WO3(Calc.) 7.4673 7.4673 3.8220 0 –2.359
    下载: 导出CSV
    Baidu
  • [1]

    Saito M 1997 Convertec 25 7

    [2]

    Muromachi T, Tsujino T, Kamitani K, Maeda K 2006 J. Sol-Gel Sci. Technol. 40 267Google Scholar

    [3]

    Xiao L H, Su Y C, Qiu W, Liu Y K, Ran J Y, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 Ceram. Int. 42 14278Google Scholar

    [4]

    Xiao L H, Su Y C, Ran J Y, Liu Y K, Qiu W, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 J. Appl. Phys. 119 164903Google Scholar

    [5]

    Xiao L H, Su Y C, Chen H Y, Liu S, Jiang M, Peng P, Liu S 2011 Appl. Phys. Lett. 99 061906Google Scholar

    [6]

    Xiao L H, Su Y C, Qiu W, Ran J Y, Liu Y K, Wu J M, Lu F H, Shao F, Peng P 2016 Appl. Phys. Lett. 109 193906Google Scholar

    [7]

    Takeda H, Adachi K 2007 J. Am. Ceram. Soc. 90 4059

    [8]

    Yao Y, Zhang L, Chen Z, Cao C, Gao Y, Luo H 2018 Ceram. Int. 44 13469Google Scholar

    [9]

    Mattox T M, Bergerud A, Agrawal A, Milliron D. J 2014 Chem. Mater. 26 1779Google Scholar

    [10]

    Guo C S, Yin S, Yan M., Sato T 2011 J. Mater. Chem 21 5099Google Scholar

    [11]

    Guo C S, Yin S, Sato T 2012 J. Am. Ceram. Soc. 95 1634Google Scholar

    [12]

    Guo C S, Yin S, Dong Q 2013 J. Nanosci. Nanotechnol. 13 3236Google Scholar

    [13]

    Adachi K, Asahi T 2012 J. Mater. Res. 27 965Google Scholar

    [14]

    Yu Z Y, Yao Y J, Yao J N, Zhang L M, Chen Z, Gao Y F, Luo H J 2017 J. Mater. Chem. A 5 6019Google Scholar

    [15]

    Lee J S, Liu H C, Peng G D, Tseng Y 2017 J. Cryst. Growth 465 27Google Scholar

    [16]

    Yang C X, Chen J F, Zeng X F, Cheng D J, Cao D P 2014 Ind. Eng. Chem. Res. 53 17981Google Scholar

    [17]

    Yang C X, Chen J F, Zeng X F, Cheng D J, Huang H F, Cao D P 2016 Nanotechnology 27 075203Google Scholar

    [18]

    Lee Y, Lee T, Jang W, Soon A 2016 Chem. Mater. 28 4528Google Scholar

    [19]

    Yoshio S, Adachi K 2018 Mater. Res. Express 6 026548Google Scholar

    [20]

    Xu Q Y, Xiao L H, Ran J Y, Tursun R, Zhou G D, Deng L L, Tang D S, Shu Q W, Qin J Y, Lu G S, Peng P 2018 J. Appl. Phys. 124 193102Google Scholar

    [21]

    McColm I J, Steadman R, Wilson S J 1978 J. Solid State Chem. 23 33Google Scholar

    [22]

    Gao T, Jelle B P 2013 J. Phys. Chem. C 117 13753Google Scholar

    [23]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717Google Scholar

    [24]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, PedersonM R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B 2003 Chem. Mater. 15 4039Google Scholar

    [27]

    Bechinger C, Wirth E, Leiderer P 1996 Appl. Phys. Lett. 68 2834Google Scholar

    [28]

    Barton D G, Shtein M, Wilson R D, Soled S L, Iglesia E 1999 J. Phys. Chem. B 103 630Google Scholar

    [29]

    Gonzalez-Borrero P P, Sato F, Medina A N, Baesso M L, Bento A C, Baldissera G, Persson C, Niklasson G A, Granqvist C G, Ferreira da Silva A 2010 Appl. Phys. Lett. 96 061909Google Scholar

    [30]

    Liu J X, Ando Y, Dong X L, Shi F, Yin S, Adachi K, Chonan T, Tanaka A, Sato T, 2010 J. Solid State Chem. 183 2456Google Scholar

    [31]

    Dostal A, Kauschka G, Reddy S J, Scholz F 1996 J. Electroanal. Chem. 406 155Google Scholar

    [32]

    Gerand B, Novogorocki G, Guenot J, Figlarz M, 1979 J. Solid State Chem. 29 429Google Scholar

    [33]

    Migas D B, Shaposhnikov V L, Rodin V N, Borisenko V E 2010 J. Appl. Phys. 108 093713Google Scholar

    [34]

    徐金荣, 王影, 朱兴凤, 李平, 张莉 2012 61 207103Google Scholar

    Xu J R, Wang Y, Zhu X F, Li P, Zhang L 2012 Acta Phys. Sin. 61 207103Google Scholar

    [35]

    周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍 2019 68 037101Google Scholar

    Zhou S W, Peng P, Chen W Q, Yu M, H, Guo H, Yuan Z 2019 Acta Phys. Sin. 68 037101Google Scholar

    [36]

    Granqvist C G 2012 Sol. Energy Mater. Sol. Cells 99 1Google Scholar

    [37]

    Kamal H, Akl A A, Abdel-Hady K 2004 Physica B 349 192Google Scholar

    [38]

    沈学础 1992 半导体光学性质 (北京: 科学出版社) 第 24 页

    Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)

    [39]

    褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第 165 页

    Chu J H 2005 Physics of Narrow Gap Semiconductors (Beijing: Science Press) (in Chinese)

    [40]

    Guo C S, Yin S, Huang L J, Yang L, Sato T 2011 Chem. Commun. 47 8853Google Scholar

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [3] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [4] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [5] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究.  , 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [6] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究.  , 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [7] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [8] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究.  , 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [9] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算.  , 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [10] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [11] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究.  , 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [13] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质.  , 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [14] 孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬. Ba0.5Sr0.5TiO3电子结构和光学性质的第一性原理研究.  , 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [15] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [16] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [17] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [18] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质.  , 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究.  , 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
计量
  • 文章访问数:  9443
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 修回日期:  2019-12-16
  • 刊出日期:  2020-02-20

/

返回文章
返回
Baidu
map