搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绝热跃迁方法测量铯喷泉钟冷原子碰撞频移

管勇 刘丹丹 王心亮 张辉 施俊如 白杨 阮军 张首刚

引用本文:
Citation:

绝热跃迁方法测量铯喷泉钟冷原子碰撞频移

管勇, 刘丹丹, 王心亮, 张辉, 施俊如, 白杨, 阮军, 张首刚

Investigation of cold atom collision frequency shift measured by rapid adiabatic passage in cesium fountain clock

Guan Yong, Liu Dan-Dan, Wang Xin-Liang, Zhang Hui, Shi Jun-Ru, Bai Yang, Ruan Jun, Zhang Shou-Gang
PDF
HTML
导出引用
  • 冷原子碰撞频移是限制铯原子喷泉钟频率不确定度性能的主要因素之一. 在使用外推法测量冷原子碰撞频移时, 制备密度均匀成比例的原子团是减小系统误差的关键. 绝热跃迁方法可以用来实现均匀跃迁比例, 均匀度可达10–3. 通过理论分析Bloch矢量的演化, 导出了误差满足的方程, 实验测量了不同参数对跃迁几率的影响, 印证了理论分析. 在此基础上可以优化实验参数并评估原子有效密度比的不确定度, 实现了冷原子碰撞频移的高精度测量.
    Cold collision frequency shift is one of the major systematic effects which limit the frequency uncertainty of the cesium fountain atomic clock. It is proportional to the effective atomic density, which is defined as the average density over the initial spacial and velocity distribution. The measurement of the frequency shift is based on a differential method, in which the fountain clock is operated with two different atomic densities, i.e. high density and low density, in turn. The clock frequency without collision shift can be achieved by linear extrapolation with the frequencies and density ratios of two states. For the density ratio is estimated with the atom number, it plays a crucial role in generating atoms with same density distribution for reducing systematic uncertainty in cold collision frequency shift estimation. The rapid adiabatic passage method is used in Cesium fountain clock to realize homogeneous transition probability, which modulates the amplitude and frequency of microwave continuously to prepare atom sample. To investigate the precision of this method, theoretical analysis and experimental measurement are both used here. An equation of deviation is derived from the time evolution of Bloch vector. The vector rotates at angular speed Ω with the rotation axis processing at lower angular speed. The deviations in the two directions on the surface of Bloch sphere are determined by the equations which are similar to wave equations, and can be simplified into wave equations when the deviations are sufficiently small. It is shown in the equations that the deviations are stimulated by angular velocity and angular acceleration of the precession, and is inversely proportional to the square of Ω. Further calculation shows that the deviation becomes smaller when the amplitude of microwave frequency and Rabi frequency are close to each other. It is then confirmed experimentally. The effects of some other parameters, such as the pulse length and time delay, on transition probability are also measured, showing that the RAP method is insensitive to these parameters up to a large scope. The precision of RAP method is dominated by three factors. The first factor is the product of rotating angular speed Ω and pulse length T, i.e. ΩT: The increase of ΩT can reduce the uncertainty to a satisfactory degree. The second factor is the uncertainty of resonant frequency, so the measurement is required to be precise. The third factor is the unexpected atoms which are not selected by the microwave, and may be attributed to pulling light. After optimizing the parameters, the ratio of low density to high density can approach to 0.5 with 3 × 10–3 uncertainty, which leads to a systematic relative uncertainty of cold collision shift up to 1.6 × 10–16.
      通信作者: 阮军, ruanjun@ntsc.ac.cn
    • 基金项目: 国家级-国家重点研发计划(批准号: 2016YFA0200503) 资助的课题(2016YFF0200202)
      Corresponding author: Ruan Jun, ruanjun@ntsc.ac.cn
    [1]

    Li R, Gibble K, Szymaniec K 2011 Metrologia 48 283Google Scholar

    [2]

    Guena J, Abgrall M, Rovera M, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R, Gibble K, Clairon A, Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391Google Scholar

    [3]

    Jefferts S R, Shirley J, Parker T E, Heavner T P, Meekhof D M, Nelson C, Levi F, Costanzo G, De Marchi A, Drullinger R, Hollberg L, Lee W D, Walls F L 2002 Metrologia 39 321Google Scholar

    [4]

    Weyers S, Gerginov V, Nemitz N, Li R, Gibble K 2012 Metrologia 49 82Google Scholar

    [5]

    阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚 2015 64 160308Google Scholar

    Ruan J, Wang Y B, Chang H, Jiang H F, Liu T, Dong R F, Zhang S G 2015 Acta Phys. Sin. 64 160308Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Verhaar B J, Koelman J M V A, Stoof H T C, Luiten O J, Crampton S B 1987 Phys. Rev. A 35 3825Google Scholar

    [8]

    Tiesinga E, Verhaar B J, Stoof H T C, van Bragt D 1992 Phys. Rev. A 45 R2671Google Scholar

    [9]

    Kokkelmans S, Verhaar B, Gibble K, Heinzen D 1997 Phys. Rev. A 56 R4389Google Scholar

    [10]

    Leo P J, Julienne P S, Mies F H, Williams C J 2001 Phys. Rev. Lett. 86 3743Google Scholar

    [11]

    Sortais Y, Bize S, Nicolas C, Clairon A, Salomon C, Williams C 2000 Phys. Rev. Lett. 85 3117Google Scholar

    [12]

    Santos F P D, Marion H, Bize S, Sortais Y, Clairon A, Salomon C 2002 Phys. Rev. Lett. 89 233004Google Scholar

    [13]

    Fertig C, Gibble K 2000 Phys. Rev. Lett. 85 1622Google Scholar

    [14]

    Heavner T P, Jefferts S R, Shirley J H, Parker T E, Donley E A, Ashby N, Barlow S E, Levi F, Costanzo G 2014 Metrologia 51 174Google Scholar

    [15]

    Messiah A 1999 Quantum Mechanics (Vol. 2) (New York: Dover) pp740–742

    [16]

    Loy M M T 1974 Phys. Rev. Lett. 32 814Google Scholar

    [17]

    Marion H 2005 Ph. D. Dissertation (Paris: Université de Paris VI)

    [18]

    Zhang S G 2004 Ph.D. Dissertation (Paris: Université de Paris VI)

    [19]

    Kazda M, Gerginov V, Nemitz N, Weyers S 2013 IEEE Trans. Instrum. Meas. 62 2812Google Scholar

    [20]

    Kasevich M A, Chu S 1992 Phys. Rev. Lett. 69 1741Google Scholar

    [21]

    刘丹丹, 阮军, 管勇, 张辉, 杨帆, 王心亮, 施俊如, 张首刚 2017 时间频率学报 42 107

    Liu D D, Ruan J, Guan Y, Zhang H, Yang F, Wang X L, Shi J R, Zhang S G 2017 Journal of Time and Frequency 42 107

  • 图 1  坐标变换示意图

    Fig. 1.  Map of coordinate transformation

    图 2  生成RAP脉冲的微波电路

    Fig. 2.  Scheme of microwave circuit generating RAP pulses.

    图 3  脉冲长度8 ms, 脉冲起始点在进入腔后4 ms的跃迁几率 (a) δ0为5 kHz, 不同b0的跃迁几率; (b)功率幅度为10 kHz, 不同δ0的跃迁几率

    Fig. 3.  Transition probability as a function of b0 and δ0 with 8 ms pulse starts 4 ms after atoms entering the cavity: (a) δ0 = 5 kHz, with different b0; (b) b0 = 10 kHz, with different δ0.

    图 4  误差源随时间的变化

    Fig. 4.  Time evolution of deviation excitation.

    图 5  时间参数对跃迁比例的影响, 其中δ0 = 5 kHz, b0 = 10 kHz. 以原子到达选态腔下端面为时间0点 (a)固定脉冲以原子在腔中心的时间点为中心, 改变脉冲长度; (b)固定脉冲长度为8 ms, 改变脉冲起始时间

    Fig. 5.  Transition probability as a function of time parameters, δ0 = 5 kHz, b0 = 10 kHz, atoms enter selection cavity at time 0: (a) Pulse duration remaining symmetric about the central point of cavity; (b) start point of pulse with a fixed duration of 8 ms.

    图 6  不同频率中心值的跃迁几率

    Fig. 6.  Transition probabilty as a function of center frequency detuning.

    图 7  δ0 = 5 kHz, 脉冲开始于不同时刻, 结束于入腔后10 ms. 5个不同脉冲长度下, 不同b0的跃迁几率 (a)横坐标为b0; (b)横坐标为b0与脉冲长度T的乘积

    Fig. 7.  Transition probability as a function of b0 for a 5 kHz δ0 pulse start at 5 different points and end at 10 ms after entering cavity: (a) b0 as the abscissa; (b) b0T as the abscissa.

    图 8  (a)在5个δ0下, 不同b0的跃迁几率; (b)脉冲频率幅度为5 kHz, b0为10 kHz, 不同脉冲长度的跃迁几率

    Fig. 8.  Transition probability as a function of (a) b0 for five different δ0, (b) pulse duration with δ0 = 5 kHz, and b0 = 10 kHz.

    图 9  (a)中心频率取100, 0, –100 Hz, 不同b0时的跃迁几率; (b)δ0 = 5 kHz, b0 = 10 kHz时, 不同中心频率的跃迁几率

    Fig. 9.  (a) Transition probability as a function of b0 for 100, 0, –100 Hz center frequency detuning; (b) transition probability as a function of center frequency detuning for δ0 = 5 kHz and b0 = 10 kHz.

    图 10  密度比的稳定度

    Fig. 10.  Stability of atoms number ratio.

    图 11  不同磁场下的跃迁几率

    Fig. 11.  Transition probability as a function of magnetic field

    Baidu
  • [1]

    Li R, Gibble K, Szymaniec K 2011 Metrologia 48 283Google Scholar

    [2]

    Guena J, Abgrall M, Rovera M, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R, Gibble K, Clairon A, Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391Google Scholar

    [3]

    Jefferts S R, Shirley J, Parker T E, Heavner T P, Meekhof D M, Nelson C, Levi F, Costanzo G, De Marchi A, Drullinger R, Hollberg L, Lee W D, Walls F L 2002 Metrologia 39 321Google Scholar

    [4]

    Weyers S, Gerginov V, Nemitz N, Li R, Gibble K 2012 Metrologia 49 82Google Scholar

    [5]

    阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚 2015 64 160308Google Scholar

    Ruan J, Wang Y B, Chang H, Jiang H F, Liu T, Dong R F, Zhang S G 2015 Acta Phys. Sin. 64 160308Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Verhaar B J, Koelman J M V A, Stoof H T C, Luiten O J, Crampton S B 1987 Phys. Rev. A 35 3825Google Scholar

    [8]

    Tiesinga E, Verhaar B J, Stoof H T C, van Bragt D 1992 Phys. Rev. A 45 R2671Google Scholar

    [9]

    Kokkelmans S, Verhaar B, Gibble K, Heinzen D 1997 Phys. Rev. A 56 R4389Google Scholar

    [10]

    Leo P J, Julienne P S, Mies F H, Williams C J 2001 Phys. Rev. Lett. 86 3743Google Scholar

    [11]

    Sortais Y, Bize S, Nicolas C, Clairon A, Salomon C, Williams C 2000 Phys. Rev. Lett. 85 3117Google Scholar

    [12]

    Santos F P D, Marion H, Bize S, Sortais Y, Clairon A, Salomon C 2002 Phys. Rev. Lett. 89 233004Google Scholar

    [13]

    Fertig C, Gibble K 2000 Phys. Rev. Lett. 85 1622Google Scholar

    [14]

    Heavner T P, Jefferts S R, Shirley J H, Parker T E, Donley E A, Ashby N, Barlow S E, Levi F, Costanzo G 2014 Metrologia 51 174Google Scholar

    [15]

    Messiah A 1999 Quantum Mechanics (Vol. 2) (New York: Dover) pp740–742

    [16]

    Loy M M T 1974 Phys. Rev. Lett. 32 814Google Scholar

    [17]

    Marion H 2005 Ph. D. Dissertation (Paris: Université de Paris VI)

    [18]

    Zhang S G 2004 Ph.D. Dissertation (Paris: Université de Paris VI)

    [19]

    Kazda M, Gerginov V, Nemitz N, Weyers S 2013 IEEE Trans. Instrum. Meas. 62 2812Google Scholar

    [20]

    Kasevich M A, Chu S 1992 Phys. Rev. Lett. 69 1741Google Scholar

    [21]

    刘丹丹, 阮军, 管勇, 张辉, 杨帆, 王心亮, 施俊如, 张首刚 2017 时间频率学报 42 107

    Liu D D, Ruan J, Guan Y, Zhang H, Yang F, Wang X L, Shi J R, Zhang S G 2017 Journal of Time and Frequency 42 107

  • [1] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制.  , 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [2] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞.  , 2022, 71(3): 033401. doi: 10.7498/aps.71.20211308
    [3] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞.  , 2021, (): . doi: 10.7498/aps.70.20211308
    [4] 陈泽锐, 刘光存, 俞振华. 谐振子势阱中双费米原子光钟的碰撞频移.  , 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [5] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估.  , 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [6] 施俊如, 王心亮, 管勇, 阮军, 刘丹丹, 白杨, 杨帆, 张辉, 余凤翔, 范思晨, 张首刚. 一种精确测量原子喷泉冷原子团温度的方法.  , 2019, 68(19): 190601. doi: 10.7498/aps.68.20190115
    [7] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量.  , 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] 林弋戈, 方占军. 锶原子光晶格钟.  , 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [9] 秦燕, 栗生长. 基于方波脉冲外场的超冷原子-分子绝热转化.  , 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [10] 王倩, 魏荣, 王育竹. 原子喷泉频标:原理与发展.  , 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [11] 薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂. 超冷铯Rydberg原子的Autler-Townes分裂.  , 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [12] 张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军. 894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用.  , 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [13] 徐润东, 刘文良, 武寄洲, 马杰, 肖连团, 贾锁堂. 磁光阱中超冷钠-铯原子碰撞的实验研究.  , 2016, 65(9): 093201. doi: 10.7498/aps.65.093201
    [14] 阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚. 时间频率基准装置的研制现状.  , 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [15] 吴长江, 阮军, 陈江, 张辉, 张首刚. 应用于铯原子喷泉钟的二维磁光阱研制.  , 2013, 62(6): 063201. doi: 10.7498/aps.62.063201
    [16] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移.  , 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [17] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量.  , 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [18] 屈一至, 王建国, 李家明. 铷原子初末通道碰撞跃迁过程.  , 1997, 46(2): 249-254. doi: 10.7498/aps.46.249
    [19] 初鑫钊, 刘淑琴, 董太乾. 铷原子频标中的微波功率频移.  , 1994, 43(7): 1072-1076. doi: 10.7498/aps.43.1072
    [20] 沈异凡, 李万兴. 激发态铯原子间的碰撞能量转移.  , 1993, 42(11): 1766-1773. doi: 10.7498/aps.42.1766
计量
  • 文章访问数:  6790
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 修回日期:  2020-04-04
  • 上网日期:  2020-05-08
  • 刊出日期:  2020-07-20

/

返回文章
返回
Baidu
map