搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z型光催化材料的研究进展

李平 李海金 涂文广 周勇 邹志刚

引用本文:
Citation:

Z型光催化材料的研究进展

李平, 李海金, 涂文广, 周勇, 邹志刚

Photocatalytic application of Z-type system

Li Ping, Li Hai-Jin, Tu Wen-Guang, Zhou Yong, Zou Zhi-Gang
PDF
导出引用
  • 与植物光合作用相似, Z型光催化材料体系是由电子传输介质、光还原剂和光氧化剂组成的双光子体系, 其应用于光催化反应具有很大的优势: 借助双光子激发过程, 在不同光催化剂上分别完成氧化反应和还原反应, 有效促进了光生电荷的分离和迁移. Z型反应体系中的光催化剂只需分别满足各自的光激发过程和对应的半反应, 为光催化材料的选择和设计提供了很大的空间. 光催化还原位点和氧化位点分别在两个光催化半导体上, 还原和氧化过程相互分离, 可以有效抑制逆反应的发生. 同时, 催化材料光还原剂中的光生空穴被来自光氧化剂中的光生电子复合, 光催化体系的稳定性随之增强. Z型光催化材料体系, 表现出了宽光谱响应, 高稳定性, 高光生载流子的分离效率, 强氧化还原能力, 具有广阔的应用前景.
    Z-type photocatlytic system, reflembling natural photosynthesis, consists of two different photocatalysts and a shuttle redox mediator, involving two-photon excitation process for photocatlysis. One photocatalyst as a photoreduction system offers the reduction sites by conduction band (CB) electrons, and the other photocatalyst as a photooxidation system provides the oxidation sites by valence band (VB) holes. A shuttle redox mediator as an electron conductor transfers the electrons from the CB of the photooxidation system to the VB of the photoreduction system. On the one hand, the separation of photocatalytic reactive sites is advantageous for spatial separation of the electrons and holes, which is beneficial for enhancing the photocatlytic activities. On the other hand, photoreduction system and photooxidation system of different materials effectively inhibit the reflerse reaction involvement of photoreductive and photooxidative products. The Z-type photocatlytic system simultaneously possesses a wide light absorption range and strong redox ability.
    • 基金项目: 国家重点基础研究发展计划(937计划)(批准号: 2014CB239302, 2011CB933303, 2013CB632404)、 国家自然科学基金(批准号: 21473091, 51272101, 51202005)、江苏省自然科学基金(批准号: BK2012015, BK20130053)、江苏省高校研究生科研创新计划(批准号: KYLX_0025)和安徽省教育厅高等学校省级自然科学重点研究项目(批准号: KJ2011A053)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB239302, 2011CB933303, 2013CB632404), the National Natural Science Foundation of China (Grant Nos. 21473091, 51272101, 51202005), the National Science Foundation of Jiangsu Province (Grant Nos. BK2012015, BK20130053), the College Postgraduate Research and Innovation Project of Jiangsu Province (Grant Nos. KYLX_0025) and the Provincial Science Key Foundation of Higher Education Institutions of Anhui (Grant Nos. KJ2011A053).
    [1]

    Chen X, Shen S, Guo L, Mao S 2010 Chem. Rev. 110 6503

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851

    [4]

    Zhang Z, Zhang L, Hedhili M N, Zhang H, Wang P 2013 Nano Lett. 13 14

    [5]

    Wang Z, Huang B, Dai Y, Liu Y, Zhang X, Qin X, Wang J, Zheng Z, Cheng H 2012 CrystEngComm 14 1687

    [6]

    Zhou P, Yu J, Jaroniec M 2014 Adv. Mater. 26 4920

    [7]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [8]

    Cheng H, Huang B, Dai Y, Qin X, Zhang X 2010 Langmuir : the ACS journal of surfaces and colloids 26 6618

    [9]

    Su J, Zou X X, Li G D, Wei X, Yan C, Wang Y N, Zhao J, Zhou L J, Chen J S 2011 J. Phys. Chem. C 115 8064

    [10]

    Hou Y, Wen Z, Cui S, Guo X, Chen J 2013 Adv. Mater. 25 6291

    [11]

    Zhong M, Ma Y, Oleynikov P, Domen K, Delaunay J J 2014 Energy Environ. Sci. 7 1693

    [12]

    Tachibana Y, Vayssieres L, Durrant J R 2012 Nat. Photonics 6 511

    [13]

    Li H, Zhou Y, Tu W, Ye Y, Zou Z 2014 Adv. Funct. Mater. DOI: 10.1002adfm.201401636

    [14]

    Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H 1997 Chem Phys Lett 277 387

    [15]

    Miseki Y, Fujiyoshi S, Gunji T, Sayama K 2013 Catal. Sci. Technol. 3 1750

    [16]

    Zhu H, Yang B, Xu J, Fu Z, Wen M, Guo T, Fu S, Zuo J, Zhang S 2009 Applied Catalysis B: Environmental 90 463

    [17]

    Fujihara K, Ohno T, Matsumura M 1998 J. Chem. Soc. Faraday Trans. 94 3705

    [18]

    Kato H, Hori M, Konta R, Shimodaira Y, Kudo A 2004 Chemistry Letters 33 1348

    [19]

    Abe R, Sayama K, Sugihara H 2005 J. Phys. Chem. B 109 16052

    [20]

    Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K 2006 Nat Mater. 5 782

    [21]

    Liu C, Tang J, Chen H M, Liu B, Yang P 2013 Nano Lett. 13 2989

    [22]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [23]

    Sasaki Y, Nemoto H, Saito K, Kudo A 2009 J. Phys. Chem. C 113 17536

    [24]

    Kato H, Sasaki Y, Shirakura N, Kudo A 2013 J. Mater. Chem. A 1 12327

    [25]

    Zhang L, Wong K H, Chen Z, Yu J C, Zhao J, Hu C, Chan C Y, Wong P K 2009 Applied Catalysis A: General 363 221

    [26]

    Iwase A, Ng Y H, Ishiguro Y, Kudo A, Amal R 2011 J. Am. Chem. Soc. 133 11054

    [27]

    Wang X, Liu G, Wang L, Chen Z, Lu G Q, Cheng H 2012 Adv. Energy Mater. 2 42

    [28]

    Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H 2001 Chem. Commu. 2416

    [29]

    Abe R, Sayama K, Domen K, Arakawa H 2001 Chemical Physics Letters 344 339

    [30]

    Abe R, Takata T, Sugihara H, Domen K 2005 Chem. Commun. 3829

    [31]

    Kim H G, Jeong E D, Borse P H, Jeon S, Yong K, Lee J S, Li W, Oh S H 2006 Appl. Phys. Lett. 89 064103

    [32]

    Sayama K, Abe R, Arakawa H, Sugihara H 2006 Catalysis Communications 7 96

    [33]

    Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K 2008 Bull. Chem. Soc. Jpn 81 927

    [34]

    Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K 2008 Chemical Physics Letters 452 120

    [35]

    Sasaki Y, Iwase A, Kato H, Kudo A 2008 Journal of Catalysis 259 133

    [36]

    Abe R, Shinmei K, Hara K, Ohtani B 2009 Chem. Commun. 3577

    [37]

    Maeda K, Higashi M, Lu D, Abe R, Domen K 2010 J. Am. Chem. Soc. 132 5858

    [38]

    Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K 2010 Langmuir : the ACS journal of surfaces and colloids 26 9161

    [39]

    Yun H J, Lee H, Kim N D, Lee D M, Yu S, Yi J 2011 ACS Nano 5 4084

    [40]

    Maeda K, Abe R, Domen K 2011 J. Phys. Chem. C 115 3057

    [41]

    Hara S, Yoshimizu M, Tanigawa S, Ni L, Ohtani B, Irie H 2012 J. Phys. Chem. C 116 17458

    [42]

    Ma S S, Maeda K, Hisatomi T, Tabata M, Kudo A, Domen K 2013 Chem. Eur. J. 19 7480

    [43]

    Sasaki Y, Kato H, Kudo A 2013 J. Am. Chem. Soc. 135 5441

    [44]

    Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T 2013 Int J Hydrogen Energy 38 8244

    [45]

    Zhao W, Maeda K, Zhang F, Hisatomi T, Domen K 2014 Phys.Chem.Chem.Phys., 16 12051

    [46]

    Tu W, Zhou Y, Liu Q, Tian Z, Gao J, Chen X, Zhang H, Liu J, Zou Z 2012 Adv. Funct. Mater. 22 1215

    [47]

    Li P, Zhou Y, Tu W, Wang R, Zhang C, Liu Q, Li H, Li Z, Dai H, Wang J, Yan S, Zou Z 2013 CrystEngComm 15 9855

    [48]

    Wang F, Zhou Y, Li P, Li H, Tu W, Yan S, Zou Z 2014 RSC Adv. 4 43172

    [49]

    Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K 2013 Angew. Chem. Int. Ed. 52 7372

    [50]

    Li P, Zhou Y, Tu W, Liu Q, Yan S, Zou Z 2013 ChemPlusChem 78 274

    [51]

    Inoue T, Fujishima A, Konishi S, Honda K 1979 Nature 277 637

    [52]

    Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z 2013 Adv. Funct. Mater. 23 1743

    [53]

    Sato S, Arai T, Morikawa T, Uemura K, Suzuki T M, Tanaka H, Kajino T 2011 J. Am. Chem. Soc. 133 15240

    [54]

    Arai T, Sato S, Kajino T, Morikawa T 2013 Energy Environ. Sci. 6 1274

    [55]

    Qin S, Xin F, Liu Y, Yin X, Ma W 2011 Journal of colloid and interface science 356 257

    [56]

    Li P, Zhou Y, Li H, Xu Q, Meng X, Wang X, Xiao M, Zou Z 2009 Energy Environ. Sci 2 745

    [57]

    Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O 2013 J. Am. Chem. Soc. 135 4596

    [58]

    Song G, Xin F, Chen J, Yin X 2014 Applied Catalysis A: General 473 90

    [59]

    Liu Y, Ji G, Dastageer M A, Zhu L, Wang J, Zhang B, Changa X, Gondal M A 2014 RSC Adv. 4 56961

    [60]

    Carey J H, Lawrence J, Tosine H M 1976 Bulletin of Environmental Contamination Toxlcology 16 697

    [61]

    Fujihira M, Satoh Y, Osa T 1981 Nature 293 206

    [62]

    Liu Z, Zhao Z G, Miyauchi M 2009 J. Phys. Chem. C 113 17132

    [63]

    Wang X, Li S, Ma Y, Yu H, Yu J 2011 J. Phys. Chem. C 115 14648

    [64]

    Ye L, Liu J, Gong C, Tian L, Peng T, Zan L 2012 ACS Catal. 2 1677

    [65]

    Lin H, Cao J, Luo B, Xu B, Chen S 2012 Catalysis Communications 21 91

    [66]

    Hou J, Yang C, Wang Z, Ji Q, Li Y, Huang G, Jiao S, Zhu H 2013 Applied Catalysis B: Environmental 142-143 579

    [67]

    Miyauchi M, Nukui Y, Atarashi D, Sakai E 2013 ACS Appl. Mater. Interfaces 5 9770

    [68]

    Chen Z, Wang W, Zhang Z, Fang X 2013 J. Phys. Chem. C 117 19346

    [69]

    Katsumata H, Sakai T, Suzuki T M, Kaneco S 2014 Ind. Eng. Chem. Res. 53 8018

    [70]

    Min Y, He G, Xu Q, Chen Y 2014 J. Mater. Chem. A. 2 1294

    [71]

    Cheng H, Hou J, Zhu H, Guo X M 2014 RSC Adv. 4 41622

    [72]

    Pu Y C, Lin W H, Hsu Y J 2015 Applied Catalysis B: Environmental 163 343

  • [1]

    Chen X, Shen S, Guo L, Mao S 2010 Chem. Rev. 110 6503

    [2]

    Fujishima A, Honda K 1972 Nature 238 37

    [3]

    Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851

    [4]

    Zhang Z, Zhang L, Hedhili M N, Zhang H, Wang P 2013 Nano Lett. 13 14

    [5]

    Wang Z, Huang B, Dai Y, Liu Y, Zhang X, Qin X, Wang J, Zheng Z, Cheng H 2012 CrystEngComm 14 1687

    [6]

    Zhou P, Yu J, Jaroniec M 2014 Adv. Mater. 26 4920

    [7]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [8]

    Cheng H, Huang B, Dai Y, Qin X, Zhang X 2010 Langmuir : the ACS journal of surfaces and colloids 26 6618

    [9]

    Su J, Zou X X, Li G D, Wei X, Yan C, Wang Y N, Zhao J, Zhou L J, Chen J S 2011 J. Phys. Chem. C 115 8064

    [10]

    Hou Y, Wen Z, Cui S, Guo X, Chen J 2013 Adv. Mater. 25 6291

    [11]

    Zhong M, Ma Y, Oleynikov P, Domen K, Delaunay J J 2014 Energy Environ. Sci. 7 1693

    [12]

    Tachibana Y, Vayssieres L, Durrant J R 2012 Nat. Photonics 6 511

    [13]

    Li H, Zhou Y, Tu W, Ye Y, Zou Z 2014 Adv. Funct. Mater. DOI: 10.1002adfm.201401636

    [14]

    Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H 1997 Chem Phys Lett 277 387

    [15]

    Miseki Y, Fujiyoshi S, Gunji T, Sayama K 2013 Catal. Sci. Technol. 3 1750

    [16]

    Zhu H, Yang B, Xu J, Fu Z, Wen M, Guo T, Fu S, Zuo J, Zhang S 2009 Applied Catalysis B: Environmental 90 463

    [17]

    Fujihara K, Ohno T, Matsumura M 1998 J. Chem. Soc. Faraday Trans. 94 3705

    [18]

    Kato H, Hori M, Konta R, Shimodaira Y, Kudo A 2004 Chemistry Letters 33 1348

    [19]

    Abe R, Sayama K, Sugihara H 2005 J. Phys. Chem. B 109 16052

    [20]

    Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K 2006 Nat Mater. 5 782

    [21]

    Liu C, Tang J, Chen H M, Liu B, Yang P 2013 Nano Lett. 13 2989

    [22]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [23]

    Sasaki Y, Nemoto H, Saito K, Kudo A 2009 J. Phys. Chem. C 113 17536

    [24]

    Kato H, Sasaki Y, Shirakura N, Kudo A 2013 J. Mater. Chem. A 1 12327

    [25]

    Zhang L, Wong K H, Chen Z, Yu J C, Zhao J, Hu C, Chan C Y, Wong P K 2009 Applied Catalysis A: General 363 221

    [26]

    Iwase A, Ng Y H, Ishiguro Y, Kudo A, Amal R 2011 J. Am. Chem. Soc. 133 11054

    [27]

    Wang X, Liu G, Wang L, Chen Z, Lu G Q, Cheng H 2012 Adv. Energy Mater. 2 42

    [28]

    Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H 2001 Chem. Commu. 2416

    [29]

    Abe R, Sayama K, Domen K, Arakawa H 2001 Chemical Physics Letters 344 339

    [30]

    Abe R, Takata T, Sugihara H, Domen K 2005 Chem. Commun. 3829

    [31]

    Kim H G, Jeong E D, Borse P H, Jeon S, Yong K, Lee J S, Li W, Oh S H 2006 Appl. Phys. Lett. 89 064103

    [32]

    Sayama K, Abe R, Arakawa H, Sugihara H 2006 Catalysis Communications 7 96

    [33]

    Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K 2008 Bull. Chem. Soc. Jpn 81 927

    [34]

    Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K 2008 Chemical Physics Letters 452 120

    [35]

    Sasaki Y, Iwase A, Kato H, Kudo A 2008 Journal of Catalysis 259 133

    [36]

    Abe R, Shinmei K, Hara K, Ohtani B 2009 Chem. Commun. 3577

    [37]

    Maeda K, Higashi M, Lu D, Abe R, Domen K 2010 J. Am. Chem. Soc. 132 5858

    [38]

    Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K 2010 Langmuir : the ACS journal of surfaces and colloids 26 9161

    [39]

    Yun H J, Lee H, Kim N D, Lee D M, Yu S, Yi J 2011 ACS Nano 5 4084

    [40]

    Maeda K, Abe R, Domen K 2011 J. Phys. Chem. C 115 3057

    [41]

    Hara S, Yoshimizu M, Tanigawa S, Ni L, Ohtani B, Irie H 2012 J. Phys. Chem. C 116 17458

    [42]

    Ma S S, Maeda K, Hisatomi T, Tabata M, Kudo A, Domen K 2013 Chem. Eur. J. 19 7480

    [43]

    Sasaki Y, Kato H, Kudo A 2013 J. Am. Chem. Soc. 135 5441

    [44]

    Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T 2013 Int J Hydrogen Energy 38 8244

    [45]

    Zhao W, Maeda K, Zhang F, Hisatomi T, Domen K 2014 Phys.Chem.Chem.Phys., 16 12051

    [46]

    Tu W, Zhou Y, Liu Q, Tian Z, Gao J, Chen X, Zhang H, Liu J, Zou Z 2012 Adv. Funct. Mater. 22 1215

    [47]

    Li P, Zhou Y, Tu W, Wang R, Zhang C, Liu Q, Li H, Li Z, Dai H, Wang J, Yan S, Zou Z 2013 CrystEngComm 15 9855

    [48]

    Wang F, Zhou Y, Li P, Li H, Tu W, Yan S, Zou Z 2014 RSC Adv. 4 43172

    [49]

    Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K 2013 Angew. Chem. Int. Ed. 52 7372

    [50]

    Li P, Zhou Y, Tu W, Liu Q, Yan S, Zou Z 2013 ChemPlusChem 78 274

    [51]

    Inoue T, Fujishima A, Konishi S, Honda K 1979 Nature 277 637

    [52]

    Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z 2013 Adv. Funct. Mater. 23 1743

    [53]

    Sato S, Arai T, Morikawa T, Uemura K, Suzuki T M, Tanaka H, Kajino T 2011 J. Am. Chem. Soc. 133 15240

    [54]

    Arai T, Sato S, Kajino T, Morikawa T 2013 Energy Environ. Sci. 6 1274

    [55]

    Qin S, Xin F, Liu Y, Yin X, Ma W 2011 Journal of colloid and interface science 356 257

    [56]

    Li P, Zhou Y, Li H, Xu Q, Meng X, Wang X, Xiao M, Zou Z 2009 Energy Environ. Sci 2 745

    [57]

    Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O 2013 J. Am. Chem. Soc. 135 4596

    [58]

    Song G, Xin F, Chen J, Yin X 2014 Applied Catalysis A: General 473 90

    [59]

    Liu Y, Ji G, Dastageer M A, Zhu L, Wang J, Zhang B, Changa X, Gondal M A 2014 RSC Adv. 4 56961

    [60]

    Carey J H, Lawrence J, Tosine H M 1976 Bulletin of Environmental Contamination Toxlcology 16 697

    [61]

    Fujihira M, Satoh Y, Osa T 1981 Nature 293 206

    [62]

    Liu Z, Zhao Z G, Miyauchi M 2009 J. Phys. Chem. C 113 17132

    [63]

    Wang X, Li S, Ma Y, Yu H, Yu J 2011 J. Phys. Chem. C 115 14648

    [64]

    Ye L, Liu J, Gong C, Tian L, Peng T, Zan L 2012 ACS Catal. 2 1677

    [65]

    Lin H, Cao J, Luo B, Xu B, Chen S 2012 Catalysis Communications 21 91

    [66]

    Hou J, Yang C, Wang Z, Ji Q, Li Y, Huang G, Jiao S, Zhu H 2013 Applied Catalysis B: Environmental 142-143 579

    [67]

    Miyauchi M, Nukui Y, Atarashi D, Sakai E 2013 ACS Appl. Mater. Interfaces 5 9770

    [68]

    Chen Z, Wang W, Zhang Z, Fang X 2013 J. Phys. Chem. C 117 19346

    [69]

    Katsumata H, Sakai T, Suzuki T M, Kaneco S 2014 Ind. Eng. Chem. Res. 53 8018

    [70]

    Min Y, He G, Xu Q, Chen Y 2014 J. Mater. Chem. A. 2 1294

    [71]

    Cheng H, Hou J, Zhu H, Guo X M 2014 RSC Adv. 4 41622

    [72]

    Pu Y C, Lin W H, Hsu Y J 2015 Applied Catalysis B: Environmental 163 343

  • [1] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性.  , 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [2] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望.  , 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [3] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质.  , 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [4] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质.  , 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [5] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展.  , 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [6] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率.  , 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [7] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射.  , 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [8] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究.  , 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [9] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究.  , 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [10] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展.  , 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [11] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究.  , 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [12] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究.  , 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [13] 黄丹, 鞠志萍, 李长生, 姚春梅, 郭进. 光催化半导体Ag2ZnSnS4的第一性原理研究.  , 2014, 63(24): 247101. doi: 10.7498/aps.63.247101
    [14] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究.  , 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [15] 桂青凤, 崔磊, 潘靖, 胡经国. V-N共掺纤锌矿ZnO光催化性质的第一性原理研究.  , 2013, 62(8): 087103. doi: 10.7498/aps.62.087103
    [16] 刘芳, 姜振益. 第一性原理研究Eu/N共掺杂锐钛矿TiO2光催化剂的电子和光学性质.  , 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [17] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究.  , 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [18] 祁洪飞, 刘大博, 成波, 郝维昌, 王天民. Ag反点阵列修饰TiO2 薄膜的制备及光催化性能研究.  , 2012, 61(22): 228201. doi: 10.7498/aps.61.228201
    [19] 赵宗彦, 柳清菊, 朱忠其, 张 瑾. S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响.  , 2008, 57(6): 3760-3768. doi: 10.7498/aps.57.3760
    [20] 金世荣, 李爱珍, 褚君浩, 陈诗伟. 量子阱中光生载流子的瞬态衰减过程与发光效率.  , 1997, 46(5): 1001-1010. doi: 10.7498/aps.46.1001
计量
  • 文章访问数:  15110
  • PDF下载量:  6174
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-03-04
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map