搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多铁材料MnSb2O6中自旋涨落的ESR研究

王哲 许劼敏 王文君 李何轩 邹优鸣 于璐 屈哲

引用本文:
Citation:

多铁材料MnSb2O6中自旋涨落的ESR研究

王哲, 许劼敏, 王文君, 李何轩, 邹优鸣, 于璐, 屈哲

Electron spin resonance study of spin fluctuation in multiferroic MnSb2O6

Wang Zhe, Xu Jie-Min, Wang Wen-Jun, Li He-Xuan, Zou You-Ming, Yu Lu, Qu Zhe
PDF
HTML
导出引用
  • 具有手性晶体结构的MnSb2O6其基态为螺旋磁序, 对外磁场有着响应丰富的铁电性. 本文通过助熔剂法制备了高质量MnSb2O6单晶. 电子自旋共振谱(ESR)的结果表明其共振场具有类似铁磁材料的各向异性温度依赖关系. 这一结果表明MnSb2O6基态的螺旋磁序在外磁场中形成了随磁场方向转动的圆锥磁序相(conical phase). 对共振峰半高宽的进一步拟合得到一个意外小的临界指数, 这表明MnSb2O6中的磁矩具有二维特征并且存在着较强的竞争相互作用.
    The magnetic materials with a chiral crystallographic lattice have hold neither inversion center nor mirror plane, leading to the emergence of Dzyaloshinskii-Moriya interaction and exotic physical phenomena like skyrmion, multiferroicity, and chiral solition lattice. The trigonal oxide MnSb2O6 is recognized as a novel chiral-lattice helimagnet with unusual multiferroic properties, where magnetic field enables the selecting of a single ferroelectric domain and a slight tilting of field direction can trigger the reversal of electric polarization. Single crystal of MnSb2O6 is prepared by the flux method. The magnetic susceptibility at 2 K shows a linear field dependent behavior except in the low field region. The magnetization shows a deviation from linearity at around 0.2 T for Hc, while a step-like anomaly is observed at about 1 T for H//c, suggesting the domain selection and spin-flop transition, respectively. The electron spin resonance parameters, such as the resonance field, the g-factor and the linewidth ΔH, are obtained by performing single Lorentzian line. Interestingly, the resonance field shows a distinct, anisotropic temperature dependent behavior when further cooling, the resonance field shifts towards the lower field direction for Hc, while it shifts towards higher field direction for H//c. Excluding several mechanisms for this FM-like temperature dependent behavior of the resonance field, combining the ground state of spiral phase and its unique multiferroic properties, we suggest that the spiral magnetic structure of the ground state of MnSb2O6 forms a conical magnetic structure under external magnetic field. Based on this, we can speculate the variation of ferroelectric polarization intensity with moderate and higher magnetic field. Moreover, the critical fitting of the ESR linewidth gives an unusual small critical index, p = 0.49 for Hc and p = 0.54 for H//c, implying that the magnetism possesses a two-dimensional characteristic and competitive interaction.
      通信作者: 屈哲, zhequ@hmfl.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U2032213)资助的课题
      Corresponding author: Qu Zhe, zhequ@hmfl.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U2032213).
    [1]

    Mühlbauer B, Binz F, Jonietz C, Pfleiderer A, Rosch A, Neubauer R, Georgii, Böni P 2009 Science 323 915Google Scholar

    [2]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [3]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pederson B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204Google Scholar

    [4]

    Du H F, Liang D, Jin C M, Kong L Y, Matthew J S, Ning W, Yang J Y, Xing Y, Wang J, Che R C, Zang J D, Jin S, Zhang Y H, Tian M L 2015 Nat. Commun. 6 7637Google Scholar

    [5]

    张蕾 2018 67 137501Google Scholar

    Zhang L 2018 Acta Phys. Sin. 67 137501Google Scholar

    [6]

    王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维 2020 69 117501Google Scholar

    Wang P C, Cao Y, Xie H G, Yin Y, Wang W, Wang Z Y, Ma X C, Wang L, Huang W 2020 Acta Phys. Sin. 69 117501Google Scholar

    [7]

    Liu Y H, Li Y Quan 2015 Chin. Phys. B 24 017506Google Scholar

    [8]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198Google Scholar

    [9]

    Kimura T 2007 Annu. Rev. Mater. Res. 37 387Google Scholar

    [10]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501Google Scholar

    [11]

    胡婷, 阚二军 2018 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [12]

    谭丛兵, 钟向丽, 王金斌 2020 69 127702Google Scholar

    Tan C B, Zhong X L, Wang J B 2020 Acta Phys. Sin. 69 127702Google Scholar

    [13]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 67 157507Google Scholar

    Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507Google Scholar

    [14]

    Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovhinnikov A S, Kishine J 2013 Phys. Rev. Lett. 111 197204Google Scholar

    [15]

    Wang L, Chepiga N, Ki D K, Li F, Zhu W, Kato Y, Ovhinnikova O S, Mila F, Martin I, Mandrus D, Morpurge A F 2017 Phys. Rev. Lett. 118 257203Google Scholar

    [16]

    Li Q Y, Zhao D, Li ZD 2021 Chin. Phys. B 30 017504Google Scholar

    [17]

    Srinivasan G, Rasmussen E T, Gallegos J, Srinivasan R, Bokhan Y I, Laletin V M 2001 Phys. Rev. B 64 214408Google Scholar

    [18]

    Srinivasan G, Rasmussen E T, Levin B J, Hayes R 2002 Phys. Rev. B 65 134402Google Scholar

    [19]

    Reimers J N, Greedan J E, Subramanian M A 1989 J. Solid State Chem. 79 26Google Scholar

    [20]

    Johnson R D, Cao K, Chapon L C, Fabrizi F, Perks N, Manuel P, Yang J J, Oh Y S, Cheong S W, Radaelli P G 2013 Phys. Rev. Lett. 111 017202Google Scholar

    [21]

    Werner J, Koo C, Klingeler R, Vasiliev A N, Ovchenkov Y A, Polovkova A S, Raganyan G V, Zvereva E A 2016 Phys. Rev. B 94 104408Google Scholar

    [22]

    Kinoshita M, Seki S, Sato T J, Nambu Y, Hong T, Matsuda M, Cao H B, Ishiwata S, Tokura Y 2016 Phys. Rev. Lett. 117 047201Google Scholar

    [23]

    Abragam A, Bleaney B 1970 Electron Paramagentic Resonance of Transition Ions (Oxfod: Clarendon Press)

    [24]

    Turov E A (translated by Tybulewicz A, Chomet S) 1965 Physical Properties of Magnetically Ordered Crystals (New York: Academic Press)

    [25]

    Zimmermann S, Steckel F, Hess C, Ji H W, Hor Y S, Cava R J, Buchner B 2016 Phys. Rev. B 94 125205Google Scholar

    [26]

    Chapman B J, Bornstein A C, Ghimire N J, Mandrus D, Lee M 2014 Appl. Phys. Lett. 105 072405Google Scholar

    [27]

    Kittel C 1948 Phys. Rev. 73 155Google Scholar

    [28]

    Nagata K, Tazuke Y, Tsushima K 1972 J. Phys. Soc. Jpn. 32 6Google Scholar

    [29]

    Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T, Tokura Y 2006 Phys. Rev. Lett. 96 207204Google Scholar

    [30]

    Honda T, White J S, Harris A B, Chapon L C, Fennell A, Roessli B, Zaharko O, Murakami Y, Kenzelmann M, Kimura T 2017 Nat. Commun. 8 15457Google Scholar

    [31]

    Mertens F G, Bishop A R, Wysin G M, Kawabata C 1989 Phys. Rev. B 39 591Google Scholar

    [32]

    Zorko A, Arcon D, Lappas A, Giapintzakis J 2001 Phys. Rev. B 65 024417Google Scholar

    [33]

    Akimitsu J, Ishikawa Y 1977 J. Phys. Soc. Jpn. 42 462Google Scholar

  • 图 1  MnSb2O6单晶XRD衍射峰

    Fig. 1.  XRD pattern for single crystalline MnSb2O6.

    图 2  MnSb2O6单晶的磁性数据 (a) 0.01 T磁场垂直和平行于c轴的磁化率及其倒数的温度依赖关系, 虚线代表高温段的居里外斯拟合; (b) 2 K下磁场垂直和平行于c轴的等温磁化强度M(H), 插图表示低场部分的放大图像

    Fig. 2.  The magnetism data of MnSb2O6 single crystal: (a) The temperature dependence of magnetic susceptibility χ and it's reciprocal under a magnetic field of μ0H = 0.01 T for Hc and Hc, respectively. The dashed lines represent a Curie-Weiss fitting to the high-temperature regime. (b) Static magnetization M(H) as a function of applied magnetic field H of MnSb2O6 for Hc and Hc axis at 2 K. The inset shows the enlarged low-magnetic field regime.

    图 3  MnSb2O6在X-band 几个典型ESR谱线. 红、绿数据点是原始数据, 黑色实线是拟合的洛伦兹线型

    Fig. 3.  Typical X-band electron spin resonance (ESR) spectra of MnSb2O6. Red dots and green squares represent the data and the solid black lines show the fitting results to a Lorentzian lineshape.

    图 4  共振场Hr随温度变化趋势. 插图表示磁场下圆锥相简图

    Fig. 4.  Temperature dependence of the resonance field Hr. The solid lines are guide to the eyes. The illustration shows the conical spiral phase under magnetic fields

    图 5  磁场垂直和平行于c轴ESR线宽随温度的变化. 实线为临界拟合; 插图为双log轴模式

    Fig. 5.  Temperature dependence of the ESR linewidth ΔH with H//c and Hc. The solid lines represent the fitting to ΔH in terms of critical behavior (see text).

    Baidu
  • [1]

    Mühlbauer B, Binz F, Jonietz C, Pfleiderer A, Rosch A, Neubauer R, Georgii, Böni P 2009 Science 323 915Google Scholar

    [2]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [3]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pederson B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204Google Scholar

    [4]

    Du H F, Liang D, Jin C M, Kong L Y, Matthew J S, Ning W, Yang J Y, Xing Y, Wang J, Che R C, Zang J D, Jin S, Zhang Y H, Tian M L 2015 Nat. Commun. 6 7637Google Scholar

    [5]

    张蕾 2018 67 137501Google Scholar

    Zhang L 2018 Acta Phys. Sin. 67 137501Google Scholar

    [6]

    王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维 2020 69 117501Google Scholar

    Wang P C, Cao Y, Xie H G, Yin Y, Wang W, Wang Z Y, Ma X C, Wang L, Huang W 2020 Acta Phys. Sin. 69 117501Google Scholar

    [7]

    Liu Y H, Li Y Quan 2015 Chin. Phys. B 24 017506Google Scholar

    [8]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198Google Scholar

    [9]

    Kimura T 2007 Annu. Rev. Mater. Res. 37 387Google Scholar

    [10]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501Google Scholar

    [11]

    胡婷, 阚二军 2018 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [12]

    谭丛兵, 钟向丽, 王金斌 2020 69 127702Google Scholar

    Tan C B, Zhong X L, Wang J B 2020 Acta Phys. Sin. 69 127702Google Scholar

    [13]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 67 157507Google Scholar

    Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507Google Scholar

    [14]

    Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovhinnikov A S, Kishine J 2013 Phys. Rev. Lett. 111 197204Google Scholar

    [15]

    Wang L, Chepiga N, Ki D K, Li F, Zhu W, Kato Y, Ovhinnikova O S, Mila F, Martin I, Mandrus D, Morpurge A F 2017 Phys. Rev. Lett. 118 257203Google Scholar

    [16]

    Li Q Y, Zhao D, Li ZD 2021 Chin. Phys. B 30 017504Google Scholar

    [17]

    Srinivasan G, Rasmussen E T, Gallegos J, Srinivasan R, Bokhan Y I, Laletin V M 2001 Phys. Rev. B 64 214408Google Scholar

    [18]

    Srinivasan G, Rasmussen E T, Levin B J, Hayes R 2002 Phys. Rev. B 65 134402Google Scholar

    [19]

    Reimers J N, Greedan J E, Subramanian M A 1989 J. Solid State Chem. 79 26Google Scholar

    [20]

    Johnson R D, Cao K, Chapon L C, Fabrizi F, Perks N, Manuel P, Yang J J, Oh Y S, Cheong S W, Radaelli P G 2013 Phys. Rev. Lett. 111 017202Google Scholar

    [21]

    Werner J, Koo C, Klingeler R, Vasiliev A N, Ovchenkov Y A, Polovkova A S, Raganyan G V, Zvereva E A 2016 Phys. Rev. B 94 104408Google Scholar

    [22]

    Kinoshita M, Seki S, Sato T J, Nambu Y, Hong T, Matsuda M, Cao H B, Ishiwata S, Tokura Y 2016 Phys. Rev. Lett. 117 047201Google Scholar

    [23]

    Abragam A, Bleaney B 1970 Electron Paramagentic Resonance of Transition Ions (Oxfod: Clarendon Press)

    [24]

    Turov E A (translated by Tybulewicz A, Chomet S) 1965 Physical Properties of Magnetically Ordered Crystals (New York: Academic Press)

    [25]

    Zimmermann S, Steckel F, Hess C, Ji H W, Hor Y S, Cava R J, Buchner B 2016 Phys. Rev. B 94 125205Google Scholar

    [26]

    Chapman B J, Bornstein A C, Ghimire N J, Mandrus D, Lee M 2014 Appl. Phys. Lett. 105 072405Google Scholar

    [27]

    Kittel C 1948 Phys. Rev. 73 155Google Scholar

    [28]

    Nagata K, Tazuke Y, Tsushima K 1972 J. Phys. Soc. Jpn. 32 6Google Scholar

    [29]

    Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T, Tokura Y 2006 Phys. Rev. Lett. 96 207204Google Scholar

    [30]

    Honda T, White J S, Harris A B, Chapon L C, Fennell A, Roessli B, Zaharko O, Murakami Y, Kenzelmann M, Kimura T 2017 Nat. Commun. 8 15457Google Scholar

    [31]

    Mertens F G, Bishop A R, Wysin G M, Kawabata C 1989 Phys. Rev. B 39 591Google Scholar

    [32]

    Zorko A, Arcon D, Lappas A, Giapintzakis J 2001 Phys. Rev. B 65 024417Google Scholar

    [33]

    Akimitsu J, Ishikawa Y 1977 J. Phys. Soc. Jpn. 42 462Google Scholar

  • [1] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输.  , 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [2] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性.  , 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [3] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输.  , 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [4] 俞杭, 徐锡方, 牛谦, 张力发. 声子角动量与手性声子.  , 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [5] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明. 多铁性磁电器件研究进展.  , 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [6] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性.  , 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [7] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控.  , 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [8] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐. BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究.  , 2018, 67(1): 017701. doi: 10.7498/aps.67.20172019
    [9] 翟晓芳, 云宇, 孟德超, 崔璋璋, 黄浩亮, 王建林, 陆亚林. 铋层状氧化物单晶薄膜多铁性研究进展.  , 2018, 67(15): 157702. doi: 10.7498/aps.67.20181159
    [10] 杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森. 基于多铁逻辑的铁磁耦合互连线磁化动态模拟.  , 2016, 65(23): 237502. doi: 10.7498/aps.65.237502
    [11] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变.  , 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [12] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究.  , 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [13] 朱晖文, 姜平, 王顺利, 毛凌峰, 唐为华. (La0.7Sr0.3MnO3 )m(BiFeO3)n 超晶格结构的导电机理.  , 2010, 59(8): 5710-5714. doi: 10.7498/aps.59.5710
    [14] 刘春旭, 张继森, 刘俊业, 金光. Er3+:YAlO3晶体中Λ型四能级系统的量子相干左手性.  , 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [15] 程萍, 张玉明, 郭辉, 张义门, 廖宇龙. LPCVD法制备的高纯半绝缘4H-SiC晶体ESR谱特性.  , 2009, 58(6): 4214-4218. doi: 10.7498/aps.58.4214
    [16] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究.  , 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [17] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究.  , 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [18] 侯碧辉, 李 勇, 刘国庆, 张桂花, 刘凤艳, 陶世荃. 单晶LiNbO3:Mn2+的ESR谱研究.  , 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [19] 邱建荣, 姜雄伟, 朱从善, 干福熹. 飞秒激光作用下光学玻璃和激光玻璃的光致暗化及其ESR研究.  , 2001, 50(5): 871-874. doi: 10.7498/aps.50.871
    [20] 凌志华. 反铁电液晶TFMHxPOCBC-D2中CD2偏振红外光谱及手性烷基链受阻转动的研究.  , 1998, 47(8): 1318-1324. doi: 10.7498/aps.47.1318
计量
  • 文章访问数:  4999
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 修回日期:  2021-09-07
  • 上网日期:  2021-09-15
  • 刊出日期:  2022-01-05

/

返回文章
返回
Baidu
map