-
通过固相烧结和高能球磨后热处理两种方法分别得到不具晶(相)界和具有明显晶(相)界的两种Nd0.7Sr0.3MnO3陶瓷样品, 并用两线法和四线法分别对这两种样品的电极-块体接触界面和晶(相)界界面的I-V和电脉冲诱导电阻转变效应(EPIR)进行研究. 结果发现, 在两线法测试下, 电极-块体界面具有回滞的非线性I-V特征, 并能产生稳定的EPIR效应, EPIR的稳定性随温度的升高逐渐减弱并消失; 而对具有明显晶(相)界的陶瓷样品, 四线法测试结果表明, 虽然其I-V行为也具有非线性和回滞性特点, 但不能产生EPIR 效应. 这些奇特的界面输运行为与界面中的各种缺陷充当陷阱并实现对载流子的捕捉和释放过程密切相关. 而大量的晶(相)界界面及其复杂的连接方式导致较大的漏导则是晶(相)界不能出现EPIR效应的主要原因.Switching behavior in Nd0.7Sr0.3MnO3 ceramic is investigated widely due to its close association with the new storage Resistive random access memory. In this work, we discuss the transport characteristic of the electrode-bulk interface and boundary/phase interface, and explain the differences between the two interfaces. Firstly, the Nd0.7Sr0.3MnO3 ceramic samples are prepared by solid-phase reaction and high-energy milling methods, respectively. And the transport properties of the two interfaces are investigated respectively by the two-line and four-line measurements. The results show that the Ag electrode-bulk interfaces exhibit nonlinear and hysteretic I-V characteristics and a stable resistance switching effect, and the stability of resistance switching behavior is reduced gradually with the increase of temperature. For the boundaries/phase interfaces, however, it does not exhibit resistance switching effect, although a nonlinear and hysteretic I-V behavior can also be observed under the four-line measurement mode. Various defects in the two interfaces act as traps and regulate the interfacial transports and result in the nonlinear and hysteretic I-V behaviors in the two interfaces. Additionally, the simulation experiments reveal that a large number of boundaries/phase interfaces and larger leakage conductance resulting from the complex connections of boundaries/phase interfaces are the main responsibilities for the fact that the boundaries/(phase) interfaces do not exhibit EPIR behavior as the electrode-bulk interface.
-
Keywords:
- resistance switching effect /
- traps state /
- boundary/phase interface /
- manganites
[1] Gao J, Shen S Q, Li T K, Sun J R 2003 Appl. Phys. Lett. 82 4732
[2] Zhao Y G, Wang Y H, Zhang G M, Zhang B, Zhang X P, Yang C X, Lang P L, Zhu M H, Guan P C 2005 Appl. Phys. Lett. 86 122502
[3] Chattopadhyay S, Giri S, Majumdar S 2012 J. Appl. Phys. 112 083915
[4] He L M, Ji Y, Wu H Y, Xu B, Sun Y B, Zhang X F, Lu Y, Zhao J J 2014 Chin. Phys. B 23 077601
[5] Medvedeva I V, Dyachkova T V, Tyutyunnik A P, Zaynulin Y G, Marchenkov V V, Marchenkova E B, Fomina K A, Yang C P, Chen S S, Baerner K 2012 Physica B 407 153
[6] Chen S S, Shi D W, Li S Z, Yang C P, Zhang Y L 2015 Bull. Mater. Sci. accepted
[7] Chen S S, Shi D W, Wang H X, Yang C P, Xiao H B, Brner K, Medvedeva V 2013 Adv. Mater. Res. 873 744
[8] Coey M 2005 Nature Mater. 4 9
[9] Wang S P, Zhang J C, Cao G X, Yu J, Jing C, Cao S X 2006 Acta Phys. Sin. 55 367 (in Chinese) [王仕鹏, 张金仓, 曹桂新, 俞坚, 敬超, 曹世勋 2006 55 367]
[10] Chen S S, Yang C P, Deng H, Sun Z G 2008 Acta Phys. Sin. 57 3798 (in Chinese) [陈顺生, 杨昌平, 邓恒, 孙志刚 2008 57 3798]
[11] Chen S S, Yang C P, Wang H, Medvedeva I V, Brner K 2010 Mat. Sci. Eng. B 172 167
[12] Liu S Q, Wu N J, Ignative A 2000 Appl. Phys. Lett. 76 2749
[13] Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W, Chen L, Jacobson A J 2004 Appl. Phys. Lett. 85 317
[14] Chen S S, Yang C P, Ren C L, Wang R L, Wang H, Medvedeva I V, Baerner K 2011 Bull. Mater. Sci. 34 1
[15] Chen S S, Yang C P, Xu L F, Yang F J, Wang H B, Wang H, Xiong L B, Yu Y, Medvedeva I V, Barner K 2010 Solid State Commun. 150 240
[16] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[17] Sawa A, Fujii T, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 18 4073
[18] Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, et al. 2004 Appl. Phys. Lett. 85 317
[19] Yang R, Li M X, Yu W D, Gao X D, Shang D S, Liu X J, Cao X, Wang Q, Chen L D 2009 Appl. Phys. Lett. 95 072105
[20] Yan Z B, Li S Z, Wang K F, Liu J M 2010 Appl. Phys. Lett. 96 012103
[21] Shang D S, Wang Q, Chen L D, Dong R, Li X M, Zhang W Q 2006 Phys. Rev. B 73 245427
[22] Chen S S, Yang C P, Luo X J, Medvedeva I V 2012 Chin. Phys. Lett. 29 077303
[23] Chen S S, Huang C, Wang R L, Yang C P, Medvedeva I V, Sun Z G 2011 Acta Phys. Sin. 60 0521 (in Chinese) [陈顺生, 黄昌, 王瑞龙, 杨昌平, Medvedeva I V, 孙志刚 2011 60 0521]
[24] Chen S S, Yang C P, Zhou Z H, Guo D H, Wang H, Rao G H 2007 J. Alloys Compd. 463 271
[25] Chen S S, Luo X J, Shi D W, Li H, Yang C P 2013 J. Mater. Sci. Technol. 29 737
[26] Odagawa A, Sato H, Inoue I H, Akoh H, Kawasaki M, Tokura Y, Kanno T, Adachi H 2004 Phys. Rev. B 70 224403
[27] Boer R W I, Morpurgo A F 2005 Phys. Rev. B 72 073207
[28] Shi D W, Yang C P, Wu M L, Xu L S, Ding Y M, Yang F J, Xiao H B, Wang R L, Brner K, Marchenkov V V 2015 Ceram. Int. 41 7276
[29] Chen S S, Yang C P, Luo X J, Barner K, Medvedeva I V 2012 Chin. Phys. Lett. 29 027302
-
[1] Gao J, Shen S Q, Li T K, Sun J R 2003 Appl. Phys. Lett. 82 4732
[2] Zhao Y G, Wang Y H, Zhang G M, Zhang B, Zhang X P, Yang C X, Lang P L, Zhu M H, Guan P C 2005 Appl. Phys. Lett. 86 122502
[3] Chattopadhyay S, Giri S, Majumdar S 2012 J. Appl. Phys. 112 083915
[4] He L M, Ji Y, Wu H Y, Xu B, Sun Y B, Zhang X F, Lu Y, Zhao J J 2014 Chin. Phys. B 23 077601
[5] Medvedeva I V, Dyachkova T V, Tyutyunnik A P, Zaynulin Y G, Marchenkov V V, Marchenkova E B, Fomina K A, Yang C P, Chen S S, Baerner K 2012 Physica B 407 153
[6] Chen S S, Shi D W, Li S Z, Yang C P, Zhang Y L 2015 Bull. Mater. Sci. accepted
[7] Chen S S, Shi D W, Wang H X, Yang C P, Xiao H B, Brner K, Medvedeva V 2013 Adv. Mater. Res. 873 744
[8] Coey M 2005 Nature Mater. 4 9
[9] Wang S P, Zhang J C, Cao G X, Yu J, Jing C, Cao S X 2006 Acta Phys. Sin. 55 367 (in Chinese) [王仕鹏, 张金仓, 曹桂新, 俞坚, 敬超, 曹世勋 2006 55 367]
[10] Chen S S, Yang C P, Deng H, Sun Z G 2008 Acta Phys. Sin. 57 3798 (in Chinese) [陈顺生, 杨昌平, 邓恒, 孙志刚 2008 57 3798]
[11] Chen S S, Yang C P, Wang H, Medvedeva I V, Brner K 2010 Mat. Sci. Eng. B 172 167
[12] Liu S Q, Wu N J, Ignative A 2000 Appl. Phys. Lett. 76 2749
[13] Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W, Chen L, Jacobson A J 2004 Appl. Phys. Lett. 85 317
[14] Chen S S, Yang C P, Ren C L, Wang R L, Wang H, Medvedeva I V, Baerner K 2011 Bull. Mater. Sci. 34 1
[15] Chen S S, Yang C P, Xu L F, Yang F J, Wang H B, Wang H, Xiong L B, Yu Y, Medvedeva I V, Barner K 2010 Solid State Commun. 150 240
[16] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[17] Sawa A, Fujii T, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 18 4073
[18] Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, et al. 2004 Appl. Phys. Lett. 85 317
[19] Yang R, Li M X, Yu W D, Gao X D, Shang D S, Liu X J, Cao X, Wang Q, Chen L D 2009 Appl. Phys. Lett. 95 072105
[20] Yan Z B, Li S Z, Wang K F, Liu J M 2010 Appl. Phys. Lett. 96 012103
[21] Shang D S, Wang Q, Chen L D, Dong R, Li X M, Zhang W Q 2006 Phys. Rev. B 73 245427
[22] Chen S S, Yang C P, Luo X J, Medvedeva I V 2012 Chin. Phys. Lett. 29 077303
[23] Chen S S, Huang C, Wang R L, Yang C P, Medvedeva I V, Sun Z G 2011 Acta Phys. Sin. 60 0521 (in Chinese) [陈顺生, 黄昌, 王瑞龙, 杨昌平, Medvedeva I V, 孙志刚 2011 60 0521]
[24] Chen S S, Yang C P, Zhou Z H, Guo D H, Wang H, Rao G H 2007 J. Alloys Compd. 463 271
[25] Chen S S, Luo X J, Shi D W, Li H, Yang C P 2013 J. Mater. Sci. Technol. 29 737
[26] Odagawa A, Sato H, Inoue I H, Akoh H, Kawasaki M, Tokura Y, Kanno T, Adachi H 2004 Phys. Rev. B 70 224403
[27] Boer R W I, Morpurgo A F 2005 Phys. Rev. B 72 073207
[28] Shi D W, Yang C P, Wu M L, Xu L S, Ding Y M, Yang F J, Xiao H B, Wang R L, Brner K, Marchenkov V V 2015 Ceram. Int. 41 7276
[29] Chen S S, Yang C P, Luo X J, Barner K, Medvedeva I V 2012 Chin. Phys. Lett. 29 027302
计量
- 文章访问数: 5736
- PDF下载量: 108
- 被引次数: 0