-
针对高功率光纤激光模式诊断和光谱诊断的需求,研究了光纤中传输模式的波长相关性,数值计算了光纤中各个模式的模场分布随波长的变化曲线及相应的光束质量,采用双傅里叶变换F2法实际测量了光纤模式成分与波长的关系曲线.结果表明,光纤中各个模式的模场分布随波长变化,波长越长,模场面积越大;模式的光束质量随波长变化不大,但在截止频率附近明显变差;光纤中各个模式的功率占比与波长有关.
-
关键词:
- 光纤模式 /
- 基于空间域和频率傅里叶变换的F2法 /
- 群时延差异 /
- 光谱干涉
High power fiber lasers and amplifiers are widely used in the scientific and industrial field. In order to meet the requirements for high output powers the effective area of fibers becomes larger and larger to reduce optical nonlinearities. With the increase of effective area, the number of high-order modes will increase. In the case of high output power, the spectral shift and broadening of the optical fiber will also affect the modal number and content. The number and content of fiber modes affect the pointing stablity and quality of the laser beam. The M2-parameter is commonly used to define the quality of the laser beam, but a small M2 number is not guaranteed for single mode operation. Therefore, the relationship between wavelength and transmission mode in fiber transmission is studied in this paper. We use the spatial and spectral Fourier transform (F2) method to establish a theoretical-experimental method of describing the relationship between wavelength and mode. This method can directly give out the modal content of optical fibers without any priori parameter such as the properties of fiber and requirement for setup accuracy. On the one hand, the theoretical modeling of wavelength affects modal content. In the simulation, the sources with the same wavelength bandwidth and different central wavelengths are used to test the fiber. The results show that the modal content and number of the fiber change with the wavelength bandwidth and center wavelength. The mode components of the corresponding optical fiber will change after changing the central wavelength. As the spectral width of the light source increases, the number of high-order modes increases. On the other hand, in order to further verify the relationship between wavelength and mode of fiber, the F2 method is used to measure the optical fiber modal content with different wavelengths. The final experimental results are in agreement with the theoretical results. The experimental and simulation results show that the mode field distribution of each mode varies with wavelength:the longer the wavelength, the larger the mode field is. The beam quality has little change with the wavelength except for those positions with frequency near the cutoff frequency, and the power ratio of each mode relates to the wavelength.-
Keywords:
- fiber modes /
- F2 method based on spatial and spectral Fourier transform /
- group delay difference /
- spectral interference
[1] Zhou P, Liu Z J, Xu X J, Chen Z L 2008 Appl. Opt. 47 3350
[2] Koplow J P, Kliner D A V, Goldberg L 2000 Opt. Lett. 25 442
[3] Nicholson J W, Fini J M, Yablon A D, Westbrook P S, Feder K, Headley C 2007 Opt. Lett. 32 2562
[4] Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208 (in Chinese)[郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 65 064208]
[5] Limpert J, Schreiber T, Nolte S, Zellmer H, Tnnermann A, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, Jakobsen C 2003 Opt. Express 11 818
[6] Olshansky R, Keck D B 1976 Appl. Opt. 15 483
[7] Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 23678
[8] Jauregui C, Eidam T, Otto H J, Stutzki F, Jansen F, Limpert J, Tnnermann A 2012 Opt. Express 20 12912
[9] Stutzki F, Otto H J, Jansen F, Gaida C, Jauregui C, Limpert J, Tnnermann A 2011 Opt. Lett. 36 4572
[10] Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350
[11] Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452
[12] Wielandy S 2007 Opt. Express 15 15402
[13] Schimpf D N, Barankov R A, Ramachandran S 2011 Opt. Express 19 13008
[14] Nandi P, Chen Z L, Witkowska A, Wadsworth W J, Birks T A, Knight J C 2009 Opt. Lett. 34 1123
[15] Kaiser T, Flamm D, Schrter S, Duparr M 2009 Opt. Express 17 9347
[16] Paurisse M, Lvque L, Hanna M, Druon F, Georges P 2012 Opt. Express 20 4074
[17] Hu L L, Feng G Y, Dong Z L 2015 Infrar. Laser Eng. 44 2517 (in Chinese)[胡丽荔, 冯国英, 董哲良 2015 红外与激光工程 44 2517]
[18] Nicholson J W, Yablon A D, Ramachandran S, Ghalmi S 2008 Opt. Express 16 7233
[19] Nicholson J W, Yablon A D, Fini J M, Mermelstein M D 2009 IEEE J. Quantum Electron. 15 61
[20] Nguyen D M, Blin S, Nguyen T N, Le S D, Provino L, Thual M, Chartier T 2012 Appl. Opt. 51 450
[21] Zhang S L, Feng G Y, Zhou S H 2016 Acta Phys. Sin. 65 154202 (in Chinese)[张澍霖, 冯国英, 周寿桓 2016 65 154202]
[22] Gloge D 1971 Appl. Opt. 10 2252
[23] Tan X F, Liu X L, Zhao W, Li C, Wang Y S, Li J F 2013 Opt. Commun. 294 148
-
[1] Zhou P, Liu Z J, Xu X J, Chen Z L 2008 Appl. Opt. 47 3350
[2] Koplow J P, Kliner D A V, Goldberg L 2000 Opt. Lett. 25 442
[3] Nicholson J W, Fini J M, Yablon A D, Westbrook P S, Feder K, Headley C 2007 Opt. Lett. 32 2562
[4] Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208 (in Chinese)[郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 65 064208]
[5] Limpert J, Schreiber T, Nolte S, Zellmer H, Tnnermann A, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, Jakobsen C 2003 Opt. Express 11 818
[6] Olshansky R, Keck D B 1976 Appl. Opt. 15 483
[7] Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 23678
[8] Jauregui C, Eidam T, Otto H J, Stutzki F, Jansen F, Limpert J, Tnnermann A 2012 Opt. Express 20 12912
[9] Stutzki F, Otto H J, Jansen F, Gaida C, Jauregui C, Limpert J, Tnnermann A 2011 Opt. Lett. 36 4572
[10] Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350
[11] Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452
[12] Wielandy S 2007 Opt. Express 15 15402
[13] Schimpf D N, Barankov R A, Ramachandran S 2011 Opt. Express 19 13008
[14] Nandi P, Chen Z L, Witkowska A, Wadsworth W J, Birks T A, Knight J C 2009 Opt. Lett. 34 1123
[15] Kaiser T, Flamm D, Schrter S, Duparr M 2009 Opt. Express 17 9347
[16] Paurisse M, Lvque L, Hanna M, Druon F, Georges P 2012 Opt. Express 20 4074
[17] Hu L L, Feng G Y, Dong Z L 2015 Infrar. Laser Eng. 44 2517 (in Chinese)[胡丽荔, 冯国英, 董哲良 2015 红外与激光工程 44 2517]
[18] Nicholson J W, Yablon A D, Ramachandran S, Ghalmi S 2008 Opt. Express 16 7233
[19] Nicholson J W, Yablon A D, Fini J M, Mermelstein M D 2009 IEEE J. Quantum Electron. 15 61
[20] Nguyen D M, Blin S, Nguyen T N, Le S D, Provino L, Thual M, Chartier T 2012 Appl. Opt. 51 450
[21] Zhang S L, Feng G Y, Zhou S H 2016 Acta Phys. Sin. 65 154202 (in Chinese)[张澍霖, 冯国英, 周寿桓 2016 65 154202]
[22] Gloge D 1971 Appl. Opt. 10 2252
[23] Tan X F, Liu X L, Zhao W, Li C, Wang Y S, Li J F 2013 Opt. Commun. 294 148
计量
- 文章访问数: 6586
- PDF下载量: 220
- 被引次数: 0