-
哈勃常数定量刻画了当前宇宙的膨胀速率, 精确测定哈勃常数是现代宇宙学的一个重要科学问题. 近年来, 哈勃常数的局域直接测量值与全局模型拟合值之间出现了越来越严重的偏差, 其中局域直接测量值来自于晚期宇宙的局域距离阶梯测量结果, 而全局模型拟合值来自于早期宇宙的微波背景辐射对宇宙学标准模型的观测限制. 如果该偏差不是由其中任何一种观测手段的观测误差和系统误差所致, 那么很有可能意味着存在超出宇宙学标准模型的新物理. 本文从观测和模型两方面简述该哈勃常数危机问题, 并结合作者近年来对此问题的研究从观测和模型两方面进行展望.The Hubble constant quantitatively characterizes the expansion rate of the current Universe, and its precise measurement has become a crucial scientific problem. In recent years, there has been an increasingly serious discrepancy between the local direct measurements of the Hubble constant and the global fitting results, where the local direct measurements come from the local distance ladder measurements of the late universe, and the global fitting results come from fitting the standard model of cosmology to the microwave background radiation from the early universe. If this discrepancy is not caused by the observation error and systematic error of any of the observation methods, it probably means that there is a new physics beyond the existing standard model of cosmology. This article briefly reviews the Hubble constant problem from two aspects with observational and theoretical points of view, and finally provide a perspective view from both observational and theoretical aspects by combining the author’s research on this problem in recent years. The observational review includes cosmological observations from both early Universe (either depending or independent of the CMB measurements) and late Universe (either depending or independent of the distant-ladder measurements), and the theoretical review includes model buildings from modifying both early Universe (either recombination history or expansion history) and late Universe (either homogeneous modifications or inhomogeneous modifications). The final observational perspective includes both local and non-local cosmic variances with their Hubble residual correlated to the matter density contrasts of observer and sample, respectively, and the final theoretical perspective concludes the interacting dark energy model as the most promising candidate for both Hubble tension and S8 tension, which can be specifically realized in a chameleon dark energy model, pointing to a scale-dependent effective cosmological constant.
-
Keywords:
- Hubble constant /
- distance ladder /
- cosmological models /
- systematics /
- new physics
[1] Aghanim N, et al. 2020 Astron. Astrophys. 641 A6 [Erratum: 2021 Astron. Astrophys. 652 C4]
[2] Riess A G, et al. 2022 Astrophys. J. Lett. 934 L7
Google Scholar
[3] Bernal J L, Verde L, Riess A G 2016 JCAP 1610 019
Google Scholar
[4] Verde L, Treu T, Riess A G 2019 Nat. Astrono. 3 891
Google Scholar
[5] Knox L, Millea M 2020 Phys. Rev. D 101 043533
Google Scholar
[6] Riess A G 2019 Nat. Rev. Phys. 2 10
Google Scholar
[7] Di Valentino E, et al. 2021 Astropart. Phys. 131 102605
Google Scholar
[8] Di Valentino E, Mena O, Pan S, Visinelli L, Yang W, Melchiorri A, Mota D F, Riess A G, Silk J 2021 Classical Quantum Gravity 38 153001
Google Scholar
[9] Perivolaropoulos L, Skara F 2022 New Astron. Rev. 95 101659
Google Scholar
[10] Abdalla E, et al. 2022 JHEAp 34 49
Google Scholar
[11] Schöneberg N, Franco Abellán G, Pérez Sánchez A, Witte S J, Poulin V, Lesgourgues J 2022 Phys. Rep. 984 1
Google Scholar
[12] Jedamzik K, Pogosian L, Zhao G B 2021 Commun. Phys. 4 123
Google Scholar
[13] Cai R G, Guo Z K, Wang S J, Yu W W, Zhou Y 2022 Phys. Rev. D 105 L021301
Google Scholar
[14] Cai R G, Guo Z K, Wang S J, Yu W W, Zhou Y 2022 Phys. Rev. D 106 063519
Google Scholar
[15] Hinshaw G, et al. 2013 Astrophys. J. Suppl. 208 19
Google Scholar
[16] Dutcher D, et al. 2021 Phys. Rev. D 104 022003
Google Scholar
[17] Aiola S, et al. 2020 JCAP 12 047
Google Scholar
[18] Birrer S, et al. 2020 Astron. Astrophys. 643 A165
Google Scholar
[19] Schöneberg N, Lesgourgues J, Hooper D C 2019 JCAP 1910 029
Google Scholar
[20] Zhang X, Huang Q G 2019 Commun. Theor. Phys. 71 826
Google Scholar
[21] Alam S, et al. 2021 Phys. Rev. D 103 083533
Google Scholar
[22] Ivanov M M, Simonović M, Zaldarriaga M 2020 JCAP 05 042
Google Scholar
[23] Philcox O H E, Ivanov M M, Simonović M, Zaldarriaga M 2020 JCAP 2005 032
Google Scholar
[24] Zhang P, D’Amico G, Senatore L, Zhao C, Cai Y 2022 JCAP 02 036
Google Scholar
[25] Pisanti O, Cirillo A, Esposito S, Iocco F, Mangano G, Miele G, Serpico P D 2008 Comput. Phys. Commun. 178 956
Google Scholar
[26] Pitrou C, Coc A, Uzan J P, Vangioni E 2018 Phys. Rep. 754 1
Google Scholar
[27] Dhawan S, Brout D, Scolnic D, Goobar A, Riess A G, Miranda V 2020 Astrophys. J. 894 54
Google Scholar
[28] Freedman W L 2021 Astrophys. J. 919 16
Google Scholar
[29] Khetan N, et al. 2021 Astron. Astrophys. 647 A72
Google Scholar
[30] Huang C D, Riess A G, Yuan W, Macri L M, Zakamska N L, Casertano S, Whitelock P A, Hoffmann S L, Filippenko A V, Scolnic D 2020 Astrophys. J. 889 5
Google Scholar
[31] Wong K C, et al. 2020 Mon. Not. R. Astron. Soc. 498 1420
Google Scholar
[32] Shajib A J, et al. 2020 Mon. Not. R. Astron. Soc. 494 6072
Google Scholar
[33] Schutz B F 1986 Nature 323 310
Google Scholar
[34] Krolak A, Schutz B F 1987 Gen. Rel. Grav. 19 1163
Google Scholar
[35] Sathyaprakash B S, Schutz B F 2009 Living Rev. Rel. 12 2
Google Scholar
[36] Abbott B, et al. 2017 Phys. Rev. Lett. 119 161101
Google Scholar
[37] Abbott B, et al. 2017 Nature 551 85
Google Scholar
[38] Hotokezaka K, Nakar E, Gottlieb O, Nissanke S, Masuda K, Hallinan G, Mooley K P, Deller A T 2019 Nat. Astron. 3 940
Google Scholar
[39] Mukherjee S, Lavaux G, Bouchet F R, Jasche J, Wandelt B D, Nissanke S M, Leclercq F, Hotokezaka K 2021 Astron. Astrophys. 646 A65
Google Scholar
[40] Wang R, Ruan W H, Yang Q, Guo Z K, Cai R G, Hu B 2022 Natl. Sci. Rev. 9 nwab054
Google Scholar
[41] Guo R Y, Zhang J F, Zhang X 2019 JCAP 02 054
Google Scholar
[42] Okamatsu F, Sekiguchi T, Takahashi T 2021 Phys. Rev. D 104 023523
Google Scholar
[43] Jedamzik K, Pogosian L 2020 Phys. Rev. Lett. 125 181302
Google Scholar
[44] Chiang C T, Slosar A 2018 arXiv: 1811.03624 [astro-ph.CO]
[45] Vachaspati T 2021 Rept. Prog. Phys. 84 074901
Google Scholar
[46] Thiele L, Guan Y, Hill J C, Kosowsky A, Spergel D N 2021 Phys. Rev. D 104 063535
Google Scholar
[47] Galli S, Pogosian L, Jedamzik K, Balkenhol L 2022 Phys. Rev. D 105 023513
Google Scholar
[48] Liu M, Huang Z, Luo X, Miao H, Singh N K, Huang L 2020 Sci. China Phys. Mech. Astron. 63 290405
Google Scholar
[49] Hart L, Chluba J 2020 Mon. Not. R. Astron. Soc. 493 3255
Google Scholar
[50] Sekiguchi T, Takahashi T 2021 Phys. Rev. D 103 083507
Google Scholar
[51] Kreisch C D, Cyr-Racine F Y, Doré O 2020 Phys. Rev. D 101 123505
Google Scholar
[52] Roy Choudhury S, Hannestad S, Tram T 2021 JCAP 03 084
Google Scholar
[53] Poulin V, Smith T L, Karwal T, Kamionkowski M 2019 Phys. Rev. Lett. 122 221301
Google Scholar
[54] Ye G, Piao Y S 2020 Phys. Rev. D 101 083507
Google Scholar
[55] Cuesta A J, Verde L, Riess A, Jimenez R 2015 Mon. Not. Roy. Astron. Soc. 448 3463
Google Scholar
[56] Heavens A, Jimenez R, Verde L 2014 Phys. Rev. Lett. 113 241302
Google Scholar
[57] Aubourg E, et al. 2015 Phys. Rev. D 92 123516
Google Scholar
[58] Vonlanthen M, Räsänen S, Durrer R 2010 JCAP 1008 023
Google Scholar
[59] Aylor K, Joy M, Knox L, Millea M, Raghunathan S, Wu W L K 2019 Astrophys. J. 874 4
Google Scholar
[60] Lemos P, Lee E, Efstathiou G, Gratton S 2019 Mon. Not. R. Astron. Soc. 483 4803
Google Scholar
[61] Verde L, Bernal J L, Heavens A F, Jimenez R 2017 Mon. Not. R. Astron. Soc. 467 731
Google Scholar
[62] Alam S, et al. 2017 Mon. Not. R. Astron. Soc. 470 2617
Google Scholar
[63] Verde L, Bellini E, Pigozzo C, Heavens A F, Jimenez R 2017 JCAP 1704 023
Google Scholar
[64] Macaulay E, et al. 2019 Mon. Not. R. Astron. Soc. 486 2184
Google Scholar
[65] Feeney S M, Peiris H V, Williamson A R, Nissanke S M, Mortlock D J, Alsing J, Scolnic D 2019 Phys. Rev. Lett. 122 061105
Google Scholar
[66] Taubenberger S, Suyu S H, Komatsu E, Jee I, Birrer S, Bonvin V, Courbin F, Rusu C E, Shajib A J, Wong K C 2019 Astron. Astrophys. 628 L7
Google Scholar
[67] Arendse N, et al. 2020 Astron. Astrophys. 639 A57
Google Scholar
[68] Zhang X, Huang Q G 2021 Phys. Rev. D 103 043513
Google Scholar
[69] Mortonson M J, Hu W, Huterer D 2009 Phys. Rev. D 80 067301
Google Scholar
[70] Benevento G, Hu W, Raveri M 2020 Phys. Rev. D 101 103517
Google Scholar
[71] Camarena D, Marra V 2021 Mon. Not. R. Astron. Soc. 504 5164
Google Scholar
[72] Efstathiou G 2021 Mon. Not. R. Astron. Soc. 505 3866
Google Scholar
[73] Jimenez R, Loeb A 2002 Astrophys. J. 573 37
Google Scholar
[74] Huang Z 2020 Astrophys. J. Lett. 892 L28
Google Scholar
[75] Luo X, Huang Z, Qian Q, Huang L 2020 Astrophys. J. 905 53
Google Scholar
[76] Huang L, Huang Z Q, Huang Z, Li Z Y, Li Z, Zhou H 2021 Res. Astron. Astrophys. 21 277
Google Scholar
[77] Wang B, Abdalla E, Atrio-Barandela F, Pavon D 2016 Rep. Prog. Phys. 79 096901
Google Scholar
[78] Di Valentino E, Melchiorri A, Mena O, Vagnozzi S 2020 Phys. Dark Univ. 30 100666
Google Scholar
[79] Aluri P K, et al. 2023 Classical Quantum Gravity 40 094001
Google Scholar
[80] Wu X P, Deng Z G, Zou Z L, Fang L Z, Qin B 1995 Astrophys. J. Lett. 448 L65
Google Scholar
[81] Wu X P, Qin B, Fang L Z 1996 Astrophys. J. 469 48
Google Scholar
[82] Lavaux G, Hudson M J 2011 Mon. Not. R. Astron. Soc. 416 2840
Google Scholar
[83] Keenan R C, Barger A J, Cowie L L 2013 Astrophys. J. 775 62
Google Scholar
[84] Hoscheit B L, Barger A J 2018 Astrophys. J. 854 46
Google Scholar
[85] Kenworthy W D, Scolnic D, Riess A 2019 Astrophys. J. 875 145
Google Scholar
[86] Luković V V, Haridasu B S, Vittorio N 2020 Mon. Not. R. Astron. Soc. 491 2075
Google Scholar
[87] Cai R G, Ding J F, Guo Z K, Wang S J, Yu W W 2021 Phys. Rev. D 103 123539
Google Scholar
[88] Cai R G, Guo Z K, Li L, Wang S J, Yu W W 2021 Phys. Rev. D 103 121302
Google Scholar
[89] Yu W W, Li L, Wang S J 2022 arXiv: 2209.14732 [astro-ph.CO]
[90] Kelly P L, Hicken M, Burke D L, Mandel K S, Kirshner R P 2010 Astrophys. J. 715 743
Google Scholar
[91] Sullivan M, et al. 2010 Mon. Not. R. Astron. Soc. 406 782
Google Scholar
[92] Lampeitl H, et al. 2010 Astrophys. J. 722 566
Google Scholar
[93] Gupta R R, et al. 2011 Astrophys. J. 740 92 [Erratum: 2011 Astrophys. J. 741 127]
[94] Johansson J, Thomas D, Pforr J, Maraston C, Nichol R C, Smith M, Lampeitl H, Beifiori A, Gupta R R, Schneider D P 2013 Mon. Not. R. Astron. Soc. 435 1680
Google Scholar
[95] Childress M J, et al. 2013 Astrophys. J. 770 108
Google Scholar
[96] Sheth R K, Diaferio A 2001 Mon. Not. R. Astron. Soc. 322 901
Google Scholar
[97] Turner E L, Cen R, Ostriker J P 1992 Astron. J. 103 1427
Google Scholar
[98] Camarena D, Marra V 2018 Phys. Rev. D 98 023537
Google Scholar
[99] Wang Q 2020 Phys. Rev. Lett. 125 051301
Google Scholar
-
图 1 哈勃常数危机: 来自 CMB-Planck+$ \Lambda{\mathrm{CDM}} $的$ H_0 $限制(蓝色)与来自 SH0ES 合作组距离阶梯 SNe+Cepheid 的$ H_0 $测量(绿色)之间高达将近$ 5\sigma $的偏离. 图片来自文献[2]
Fig. 1. The Hubble-constant tension: The nearly$ 5\sigma $discrepancy between the$ H_0 $constraint (blue) from CMB-Planck+$ \Lambda{\mathrm{CDM}}$ and the$ H_0 $measurement (green) from SH0ES group using the distance ladder SNe+Cepheid. The figure comes from Ref. [2].
图 3 把BBN与星系BAO(蓝色)和Lyman-$ \alpha $BAO(绿色)结合后给出的限制(红色)与Planck 2018 限制结果(紫色)和SH0ES组测量结果(橙色)的对比. 图片来自文献[18]
Fig. 3. The comparison to the Planck 2018 constraint (purple) and the SH0ES measurement (orange) with respect to the joint constraint (red) from combing BBN with galaxy BAO (blue) and Lyman-$ \alpha $BAO (green). The figure comes from Ref. [18].
图 7 星系弱引力透镜观测(左上)、SH0ES组对$ H_0 $的测量(左中)以及重子声学振荡观测(左下)对早期宇宙模型(右)的限制. 图片来自文献[12]
Fig. 7. The constraints (left) on the early-Universe models (right) from the galactic weak lensing observation (left top), the SH0ES measurement on$ H_0 $(left medium), and the BAO observation (left bottom). The figure comes from Ref. [12].
图 8 在$ \Lambda{\mathrm{CDM}} $ 模型及其PAge/MAPAge参数化模型以及按红移$ z $和$ y = 1 - a $的泰勒展开近似下的BAO特征尺度(红、蓝、绿)与BAO观测数据的对比. 图片来自文献[14]
Fig. 8. The comparison of characteristic BAO length scales to the BAO data from the$ \Lambda {\mathrm{CDM}}$ model and its PAge/MAPAge parameterization models as well as its Taylor expansion models in redshift$ z $and$ y=1-a $. The figure comes from Ref. [14].
图 9 变色龙暗能量机制示意图 (a) 变色龙暗能量有效势$ V_{\rm{eff}}(\varphi) = V(\varphi) + U(\varphi) $, 其中变色龙场势函数取 Peebles-Ratra 势函数$ V(\varphi) = \alpha\varLambda^4(\varLambda/\varphi)^n $, 变色龙耦合项取伸缩子耦合$ U(\varphi) = \exp(\varphi/\varLambda)\hat{\rho}_{\rm{m}} $. 易见当实线对应的物质密度$ \hat{\rho}_{\rm{m}} $大于虚线对应的物质密度时, 相应地实线在有效势的真空期望值处对应的势函数值(真空能)也大于虚线的情况. (b) 选取 Planck 2018 测量结果(红色)为背景宇宙学, 那么局域物质密度超出(纵轴)对应的局域哈勃常数(横轴)可以拟合 SH0ES 测量结果(蓝色). 图片来自文献[88]
Fig. 9. The illustrative demonstration of the chameleon dark energy model. (a) The effective potential of chameleon dark energy is$ V_{\rm{eff}}(\varphi) = V(\varphi) + U(\varphi) $, where the chameleon potential is of Peebles-Ratra form$ V(\varphi) = \alpha\varLambda^4(\varLambda/\varphi)^n $, and the chameleon coupling is of dilaton form$ U(\varphi) = \exp(\varphi/\varLambda)\hat{\rho}_{\rm{m}} $. It is easy to see that when the solid curve corresponds to higher matter density$ \hat{\rho}_{\rm{m}} $than the dashed curve with lower one, then the potential energy (vacuum energy) at the vacuum expectation value of the effective potential is also higher than the dashed case. (b) Choosing the Planck 2018 result (red) as the background cosmology, then the corresponding local Hubble constant (horizontal axis) from given local matter density contrast (vertical axis) could fit the SH0ES result (blue). The figure comes from Ref. [88].
-
[1] Aghanim N, et al. 2020 Astron. Astrophys. 641 A6 [Erratum: 2021 Astron. Astrophys. 652 C4]
[2] Riess A G, et al. 2022 Astrophys. J. Lett. 934 L7
Google Scholar
[3] Bernal J L, Verde L, Riess A G 2016 JCAP 1610 019
Google Scholar
[4] Verde L, Treu T, Riess A G 2019 Nat. Astrono. 3 891
Google Scholar
[5] Knox L, Millea M 2020 Phys. Rev. D 101 043533
Google Scholar
[6] Riess A G 2019 Nat. Rev. Phys. 2 10
Google Scholar
[7] Di Valentino E, et al. 2021 Astropart. Phys. 131 102605
Google Scholar
[8] Di Valentino E, Mena O, Pan S, Visinelli L, Yang W, Melchiorri A, Mota D F, Riess A G, Silk J 2021 Classical Quantum Gravity 38 153001
Google Scholar
[9] Perivolaropoulos L, Skara F 2022 New Astron. Rev. 95 101659
Google Scholar
[10] Abdalla E, et al. 2022 JHEAp 34 49
Google Scholar
[11] Schöneberg N, Franco Abellán G, Pérez Sánchez A, Witte S J, Poulin V, Lesgourgues J 2022 Phys. Rep. 984 1
Google Scholar
[12] Jedamzik K, Pogosian L, Zhao G B 2021 Commun. Phys. 4 123
Google Scholar
[13] Cai R G, Guo Z K, Wang S J, Yu W W, Zhou Y 2022 Phys. Rev. D 105 L021301
Google Scholar
[14] Cai R G, Guo Z K, Wang S J, Yu W W, Zhou Y 2022 Phys. Rev. D 106 063519
Google Scholar
[15] Hinshaw G, et al. 2013 Astrophys. J. Suppl. 208 19
Google Scholar
[16] Dutcher D, et al. 2021 Phys. Rev. D 104 022003
Google Scholar
[17] Aiola S, et al. 2020 JCAP 12 047
Google Scholar
[18] Birrer S, et al. 2020 Astron. Astrophys. 643 A165
Google Scholar
[19] Schöneberg N, Lesgourgues J, Hooper D C 2019 JCAP 1910 029
Google Scholar
[20] Zhang X, Huang Q G 2019 Commun. Theor. Phys. 71 826
Google Scholar
[21] Alam S, et al. 2021 Phys. Rev. D 103 083533
Google Scholar
[22] Ivanov M M, Simonović M, Zaldarriaga M 2020 JCAP 05 042
Google Scholar
[23] Philcox O H E, Ivanov M M, Simonović M, Zaldarriaga M 2020 JCAP 2005 032
Google Scholar
[24] Zhang P, D’Amico G, Senatore L, Zhao C, Cai Y 2022 JCAP 02 036
Google Scholar
[25] Pisanti O, Cirillo A, Esposito S, Iocco F, Mangano G, Miele G, Serpico P D 2008 Comput. Phys. Commun. 178 956
Google Scholar
[26] Pitrou C, Coc A, Uzan J P, Vangioni E 2018 Phys. Rep. 754 1
Google Scholar
[27] Dhawan S, Brout D, Scolnic D, Goobar A, Riess A G, Miranda V 2020 Astrophys. J. 894 54
Google Scholar
[28] Freedman W L 2021 Astrophys. J. 919 16
Google Scholar
[29] Khetan N, et al. 2021 Astron. Astrophys. 647 A72
Google Scholar
[30] Huang C D, Riess A G, Yuan W, Macri L M, Zakamska N L, Casertano S, Whitelock P A, Hoffmann S L, Filippenko A V, Scolnic D 2020 Astrophys. J. 889 5
Google Scholar
[31] Wong K C, et al. 2020 Mon. Not. R. Astron. Soc. 498 1420
Google Scholar
[32] Shajib A J, et al. 2020 Mon. Not. R. Astron. Soc. 494 6072
Google Scholar
[33] Schutz B F 1986 Nature 323 310
Google Scholar
[34] Krolak A, Schutz B F 1987 Gen. Rel. Grav. 19 1163
Google Scholar
[35] Sathyaprakash B S, Schutz B F 2009 Living Rev. Rel. 12 2
Google Scholar
[36] Abbott B, et al. 2017 Phys. Rev. Lett. 119 161101
Google Scholar
[37] Abbott B, et al. 2017 Nature 551 85
Google Scholar
[38] Hotokezaka K, Nakar E, Gottlieb O, Nissanke S, Masuda K, Hallinan G, Mooley K P, Deller A T 2019 Nat. Astron. 3 940
Google Scholar
[39] Mukherjee S, Lavaux G, Bouchet F R, Jasche J, Wandelt B D, Nissanke S M, Leclercq F, Hotokezaka K 2021 Astron. Astrophys. 646 A65
Google Scholar
[40] Wang R, Ruan W H, Yang Q, Guo Z K, Cai R G, Hu B 2022 Natl. Sci. Rev. 9 nwab054
Google Scholar
[41] Guo R Y, Zhang J F, Zhang X 2019 JCAP 02 054
Google Scholar
[42] Okamatsu F, Sekiguchi T, Takahashi T 2021 Phys. Rev. D 104 023523
Google Scholar
[43] Jedamzik K, Pogosian L 2020 Phys. Rev. Lett. 125 181302
Google Scholar
[44] Chiang C T, Slosar A 2018 arXiv: 1811.03624 [astro-ph.CO]
[45] Vachaspati T 2021 Rept. Prog. Phys. 84 074901
Google Scholar
[46] Thiele L, Guan Y, Hill J C, Kosowsky A, Spergel D N 2021 Phys. Rev. D 104 063535
Google Scholar
[47] Galli S, Pogosian L, Jedamzik K, Balkenhol L 2022 Phys. Rev. D 105 023513
Google Scholar
[48] Liu M, Huang Z, Luo X, Miao H, Singh N K, Huang L 2020 Sci. China Phys. Mech. Astron. 63 290405
Google Scholar
[49] Hart L, Chluba J 2020 Mon. Not. R. Astron. Soc. 493 3255
Google Scholar
[50] Sekiguchi T, Takahashi T 2021 Phys. Rev. D 103 083507
Google Scholar
[51] Kreisch C D, Cyr-Racine F Y, Doré O 2020 Phys. Rev. D 101 123505
Google Scholar
[52] Roy Choudhury S, Hannestad S, Tram T 2021 JCAP 03 084
Google Scholar
[53] Poulin V, Smith T L, Karwal T, Kamionkowski M 2019 Phys. Rev. Lett. 122 221301
Google Scholar
[54] Ye G, Piao Y S 2020 Phys. Rev. D 101 083507
Google Scholar
[55] Cuesta A J, Verde L, Riess A, Jimenez R 2015 Mon. Not. Roy. Astron. Soc. 448 3463
Google Scholar
[56] Heavens A, Jimenez R, Verde L 2014 Phys. Rev. Lett. 113 241302
Google Scholar
[57] Aubourg E, et al. 2015 Phys. Rev. D 92 123516
Google Scholar
[58] Vonlanthen M, Räsänen S, Durrer R 2010 JCAP 1008 023
Google Scholar
[59] Aylor K, Joy M, Knox L, Millea M, Raghunathan S, Wu W L K 2019 Astrophys. J. 874 4
Google Scholar
[60] Lemos P, Lee E, Efstathiou G, Gratton S 2019 Mon. Not. R. Astron. Soc. 483 4803
Google Scholar
[61] Verde L, Bernal J L, Heavens A F, Jimenez R 2017 Mon. Not. R. Astron. Soc. 467 731
Google Scholar
[62] Alam S, et al. 2017 Mon. Not. R. Astron. Soc. 470 2617
Google Scholar
[63] Verde L, Bellini E, Pigozzo C, Heavens A F, Jimenez R 2017 JCAP 1704 023
Google Scholar
[64] Macaulay E, et al. 2019 Mon. Not. R. Astron. Soc. 486 2184
Google Scholar
[65] Feeney S M, Peiris H V, Williamson A R, Nissanke S M, Mortlock D J, Alsing J, Scolnic D 2019 Phys. Rev. Lett. 122 061105
Google Scholar
[66] Taubenberger S, Suyu S H, Komatsu E, Jee I, Birrer S, Bonvin V, Courbin F, Rusu C E, Shajib A J, Wong K C 2019 Astron. Astrophys. 628 L7
Google Scholar
[67] Arendse N, et al. 2020 Astron. Astrophys. 639 A57
Google Scholar
[68] Zhang X, Huang Q G 2021 Phys. Rev. D 103 043513
Google Scholar
[69] Mortonson M J, Hu W, Huterer D 2009 Phys. Rev. D 80 067301
Google Scholar
[70] Benevento G, Hu W, Raveri M 2020 Phys. Rev. D 101 103517
Google Scholar
[71] Camarena D, Marra V 2021 Mon. Not. R. Astron. Soc. 504 5164
Google Scholar
[72] Efstathiou G 2021 Mon. Not. R. Astron. Soc. 505 3866
Google Scholar
[73] Jimenez R, Loeb A 2002 Astrophys. J. 573 37
Google Scholar
[74] Huang Z 2020 Astrophys. J. Lett. 892 L28
Google Scholar
[75] Luo X, Huang Z, Qian Q, Huang L 2020 Astrophys. J. 905 53
Google Scholar
[76] Huang L, Huang Z Q, Huang Z, Li Z Y, Li Z, Zhou H 2021 Res. Astron. Astrophys. 21 277
Google Scholar
[77] Wang B, Abdalla E, Atrio-Barandela F, Pavon D 2016 Rep. Prog. Phys. 79 096901
Google Scholar
[78] Di Valentino E, Melchiorri A, Mena O, Vagnozzi S 2020 Phys. Dark Univ. 30 100666
Google Scholar
[79] Aluri P K, et al. 2023 Classical Quantum Gravity 40 094001
Google Scholar
[80] Wu X P, Deng Z G, Zou Z L, Fang L Z, Qin B 1995 Astrophys. J. Lett. 448 L65
Google Scholar
[81] Wu X P, Qin B, Fang L Z 1996 Astrophys. J. 469 48
Google Scholar
[82] Lavaux G, Hudson M J 2011 Mon. Not. R. Astron. Soc. 416 2840
Google Scholar
[83] Keenan R C, Barger A J, Cowie L L 2013 Astrophys. J. 775 62
Google Scholar
[84] Hoscheit B L, Barger A J 2018 Astrophys. J. 854 46
Google Scholar
[85] Kenworthy W D, Scolnic D, Riess A 2019 Astrophys. J. 875 145
Google Scholar
[86] Luković V V, Haridasu B S, Vittorio N 2020 Mon. Not. R. Astron. Soc. 491 2075
Google Scholar
[87] Cai R G, Ding J F, Guo Z K, Wang S J, Yu W W 2021 Phys. Rev. D 103 123539
Google Scholar
[88] Cai R G, Guo Z K, Li L, Wang S J, Yu W W 2021 Phys. Rev. D 103 121302
Google Scholar
[89] Yu W W, Li L, Wang S J 2022 arXiv: 2209.14732 [astro-ph.CO]
[90] Kelly P L, Hicken M, Burke D L, Mandel K S, Kirshner R P 2010 Astrophys. J. 715 743
Google Scholar
[91] Sullivan M, et al. 2010 Mon. Not. R. Astron. Soc. 406 782
Google Scholar
[92] Lampeitl H, et al. 2010 Astrophys. J. 722 566
Google Scholar
[93] Gupta R R, et al. 2011 Astrophys. J. 740 92 [Erratum: 2011 Astrophys. J. 741 127]
[94] Johansson J, Thomas D, Pforr J, Maraston C, Nichol R C, Smith M, Lampeitl H, Beifiori A, Gupta R R, Schneider D P 2013 Mon. Not. R. Astron. Soc. 435 1680
Google Scholar
[95] Childress M J, et al. 2013 Astrophys. J. 770 108
Google Scholar
[96] Sheth R K, Diaferio A 2001 Mon. Not. R. Astron. Soc. 322 901
Google Scholar
[97] Turner E L, Cen R, Ostriker J P 1992 Astron. J. 103 1427
Google Scholar
[98] Camarena D, Marra V 2018 Phys. Rev. D 98 023537
Google Scholar
[99] Wang Q 2020 Phys. Rev. Lett. 125 051301
Google Scholar
计量
- 文章访问数: 6873
- PDF下载量: 268
- 被引次数: 0