搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率、高效率808nm半导体激光器阵列

王贞福 杨国文 吴建耀 宋克昌 李秀山 宋云菲

引用本文:
Citation:

高功率、高效率808nm半导体激光器阵列

王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲

High-power, high-efficiency 808 nm laser diode array

Wang Zhen-Fu, Yang Guo-Wen, Wu Jian-Yao, Song Ke-Chang, Li Xiu-Shan, Song Yun-Fei
PDF
导出引用
  • 通过设计高效率808 nm非对称宽波导外延结构,减少P型波导层和包层的自由载流子光吸收,实现腔内光吸收损耗为0.63 cm -1. 制备的808 nm半导体激光器阵列在室温25 ℃下,实现驱动电流135 A,工作电压1.76 V,连续输出功率大于150 W,斜率效率高达1.25 W/A,中心波长809.3 nm,器件最高电光转换效率为65.5%,这是目前国内报道的808 nm半导体激光器阵列的最高电光转换效率,达到国际同类器件最好水平.
    High-power, high-efficiency 808 nm laser diode arrays for pumping solid-state lasers have been widely used in industrial, scientific, medical and biological applications. The tendency of development of 808 nm laser diode pumping with high power, high efficiency and long lifetime is well-known. Diode-pumped solid-state system with high-efficiency laser diode array has many advantages such as compact volume, lower weight and energy saving. Currently, commercial 808 nm diode laser arrays with lower power conversion efficiency of about 50%-55%, due to the optical absorption losses for GaAs-based epitaxial materials, have been reported. In order to reduce series resistance and thermal resistance, heavily doped p-type waveguide and cladding layers are employed. However, the absorption loss on the free carriers in heavily doped p-type layers is dominant, leading to a lower power conversion efficiency. In order to achieve a high efficiency, the following requirements must be considered: improving the internal quantum efficiency by reducing the carrier leakage and increasing the electron injection efficiency; minimizing the voltage drop by optimizing the operating voltage; reducing the series resistance and thermal resistance of device; minimizing the internal loss including free-carrier absorption loss and scattering loss by designing optimized waveguide and cladding structure. In this paper, optimizing the epitaxial structure and fabricating technologies are demonstrated to achieve the high efficiency and high power. The asymmetric broad waveguide epitaxial structure with lower absorption loss in p-type waveguide and cladding layer is designed in order to achieve the above goals. The high-efficiency epitaxial structure is optimized including the thickness, doping and composition for each layer structure. The strained quantum well diode laser with lower transparency current and higher differential is of benefit to achieving the high power. A novel asymmetric broad waveguide structure is designed by optimizing the waveguide thickness and component of p-waveguide so as to reduce carrier absorption loss, the optical absorption loss in this epitaxial structure is achieved to be as low as 0.63 cm-1. The wafer is grown by metalorganic chemical vapor deposition on an n-GaAs substrate. The optimized growth conditions and substrates orientation are extensively studied to improve the crystal quality and reduce the internal loss and defects. The wafer is processed using standard procedures. For the fabricated 1-cm laser diode array mounted on P-side down on copper microchannel cooled heatsink, the device shows an output power of 150 W under an operating current of 135 A with an emitting wavelength of 809 nm, an operating voltage of 1.76 V, a slope efficiency of as high as 1.25 W/A, and maximum power conversion efficiency of as high as 65.5%, which is the highest level of 808 nm diode laser array with an output power of 150 W.
      通信作者: 杨国文, yangguowen@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61504167)和中国科学院百人计划(批准号:Y429941233)资助的课题.
      Corresponding author: Yang Guo-Wen, yangguowen@opt.ac.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No. 61504167) and the 100 Talents Project of Chinese Axademy of Sciences, China (Grant No. Y429941233).
    [1]

    Calmano T, Siebenmorgen J, Paschke A G, Fiebig C, Paschke K, Erbert G, Petermann K, Huber G 2011 Opt. Mater. Express 3 428

    [2]

    Chen H P, Cao J S, Guo S X 2013 Acta Phys. Sin. 62 104209 (in Chinese) [陈海鹏, 曹军胜, 郭树旭 2013 62 104209]

    [3]

    Zhou M Zhao D G 2016 Acta Phys. Sin. 65 077802 (in Chinese) [周梅, 赵德刚 2016 65 077802]

    [4]

    Frevert C, Bugge F, Knigge S, Ginolas A, Erbert G, Crump P 2016 Proc. SPIE 9733 97330L

    [5]

    Yamagata Y, Yamada Y, Muto M, Sato S, Nogawa R, Sakamoto A, Yamaguchi M 2015 Proc. SPIE 9348 93480F

    [6]

    Pietrzak A, Huelsewede R, Zorn M, Hirsekorn O, Sebastian J, Meusel J, Bluemel V, Hennig P 2014 Proc. SPIE 8965 89650T

    [7]

    Crump P, Erbert G, Wenzel H, Frevert C, Schultz C M, Hasler K H, Staske R, Sumpf B, Maaßdorf A, Bugge F, Knigge S, Member, Trankle G 2013 IEEE J. Sel. Top. Quant. Electron. 19 1501211

    [8]

    Lauer C, König H, Grönninger G, Hein S, Alvaro G I, Furitsch M, Maric J, Kissel H, Wolf P, Biesenbach J, Strauß U 2012 Proc. SPIE 8241 824111

    [9]

    Cao C S, Fan L, Ai I, Li J, Caliva B, Zeng L F, Thiagarajan P, McElhinney M 2010 Proc. SPIE 7583 75830L

    [10]

    Hlsewede R, Schulze H, Sebastian J, Schröder D, Meusel J, Hennig P 2007 Proc. SPIE 6456 645607

    [11]

    Peters M, Rossin V, Everett M, Zucker E, Power H 2007 Proc. SPIE 6456 64560G

    [12]

    Crump P A, Crum T R, DeVito M, Farmer J, Grimshaw M, Huang Z, Igl S A, Macomber S, Thiagarajan P, Wise D 2004 Proc. SPIE 5336 144

    [13]

    Wang J, Smith B, Xie X M, Wang X Q, Burnham G T 1999 Appl. Phys. Lett. 74 1525

    [14]

    Zhong L, Wang J, Feng X M, Wang Y G, Wang C L, Han L, Chong F, Liu S P, Ma X Y 2007 Chinese J. Lasers 34 1038 (in Chinese) [仲莉, 王俊, 冯小明, 王勇刚, 王翠鸾, 韩琳, 崇锋, 刘素平, 马骁宇 2007 中国激光 34 1038]

    [15]

    Yang H W, Huang K, Chen H T, Zhang S Z, Ren Y X 2009 Nanoelectronic Device & Technology 47 71 (in Chinese) [杨红伟, 黄科, 陈宏泰, 张世祖, 任永学 2009 纳米器件与技术 47 71]

    [16]

    Zhang J S, Ning Y Q, Zhang J L, Zhang J, Zhang J W, Wang L J 2014 Chinese J. Lasers 41 0107001 (in Chinese) [张金胜, 宁永强, 张金龙, 张建, 张建伟, 王立军 2014 中国激光 41 0107001]

    [17]

    Matthew P, Victor R, Bruno A 2005 Proc. SPIE 5711 142

  • [1]

    Calmano T, Siebenmorgen J, Paschke A G, Fiebig C, Paschke K, Erbert G, Petermann K, Huber G 2011 Opt. Mater. Express 3 428

    [2]

    Chen H P, Cao J S, Guo S X 2013 Acta Phys. Sin. 62 104209 (in Chinese) [陈海鹏, 曹军胜, 郭树旭 2013 62 104209]

    [3]

    Zhou M Zhao D G 2016 Acta Phys. Sin. 65 077802 (in Chinese) [周梅, 赵德刚 2016 65 077802]

    [4]

    Frevert C, Bugge F, Knigge S, Ginolas A, Erbert G, Crump P 2016 Proc. SPIE 9733 97330L

    [5]

    Yamagata Y, Yamada Y, Muto M, Sato S, Nogawa R, Sakamoto A, Yamaguchi M 2015 Proc. SPIE 9348 93480F

    [6]

    Pietrzak A, Huelsewede R, Zorn M, Hirsekorn O, Sebastian J, Meusel J, Bluemel V, Hennig P 2014 Proc. SPIE 8965 89650T

    [7]

    Crump P, Erbert G, Wenzel H, Frevert C, Schultz C M, Hasler K H, Staske R, Sumpf B, Maaßdorf A, Bugge F, Knigge S, Member, Trankle G 2013 IEEE J. Sel. Top. Quant. Electron. 19 1501211

    [8]

    Lauer C, König H, Grönninger G, Hein S, Alvaro G I, Furitsch M, Maric J, Kissel H, Wolf P, Biesenbach J, Strauß U 2012 Proc. SPIE 8241 824111

    [9]

    Cao C S, Fan L, Ai I, Li J, Caliva B, Zeng L F, Thiagarajan P, McElhinney M 2010 Proc. SPIE 7583 75830L

    [10]

    Hlsewede R, Schulze H, Sebastian J, Schröder D, Meusel J, Hennig P 2007 Proc. SPIE 6456 645607

    [11]

    Peters M, Rossin V, Everett M, Zucker E, Power H 2007 Proc. SPIE 6456 64560G

    [12]

    Crump P A, Crum T R, DeVito M, Farmer J, Grimshaw M, Huang Z, Igl S A, Macomber S, Thiagarajan P, Wise D 2004 Proc. SPIE 5336 144

    [13]

    Wang J, Smith B, Xie X M, Wang X Q, Burnham G T 1999 Appl. Phys. Lett. 74 1525

    [14]

    Zhong L, Wang J, Feng X M, Wang Y G, Wang C L, Han L, Chong F, Liu S P, Ma X Y 2007 Chinese J. Lasers 34 1038 (in Chinese) [仲莉, 王俊, 冯小明, 王勇刚, 王翠鸾, 韩琳, 崇锋, 刘素平, 马骁宇 2007 中国激光 34 1038]

    [15]

    Yang H W, Huang K, Chen H T, Zhang S Z, Ren Y X 2009 Nanoelectronic Device & Technology 47 71 (in Chinese) [杨红伟, 黄科, 陈宏泰, 张世祖, 任永学 2009 纳米器件与技术 47 71]

    [16]

    Zhang J S, Ning Y Q, Zhang J L, Zhang J, Zhang J W, Wang L J 2014 Chinese J. Lasers 41 0107001 (in Chinese) [张金胜, 宁永强, 张金龙, 张建, 张建伟, 王立军 2014 中国激光 41 0107001]

    [17]

    Matthew P, Victor R, Bruno A 2005 Proc. SPIE 5711 142

  • [1] 赵壮壮, 荀孟, 潘冠中, 孙昀, 周静涛, 王大海, 吴德馨. 高功率转换效率905 nm垂直腔面发射激光器的设计与制备.  , 2021, 70(11): 114202. doi: 10.7498/aps.70.20210043
    [2] 王学友, 王宇飞, 郑婉华. Parity-time对称性对电注入半导体激光器的模式控制.  , 2020, 69(2): 024202. doi: 10.7498/aps.69.20191351
    [3] 张柏富, 朱康, 武恒, 胡海峰, 沈哲, 许吉. 双凹型谐振腔结构的金属半导体纳米激光器的数值仿真.  , 2019, 68(22): 224201. doi: 10.7498/aps.68.20190972
    [4] 邱橙, 陈泳屹, 高峰, 秦莉, 王立军. 一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制.  , 2019, 68(16): 164204. doi: 10.7498/aps.68.20190744
    [5] 丁武文, 孙利群, 衣路英. 基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术.  , 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [6] 王永胜, 赵彤, 王安帮, 张明江, 王云才. 大幅度增加弛豫振荡频率来实现毫米级外腔半导体激光器的外腔机制转换.  , 2017, 66(23): 234204. doi: 10.7498/aps.66.234204
    [7] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器.  , 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [8] 宋云菲, 王贞福, 李特, 杨国文. 808 nm半导体激光芯片电光转换效率的温度特性机理研究.  , 2017, 66(10): 104202. doi: 10.7498/aps.66.104202
    [9] 王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 利用表面微结构提高波长上转换红外探测器效率.  , 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [10] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法.  , 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [11] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究.  , 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [12] 何元, 邓涛, 吴正茂, 刘元元, 夏光琼. 非对称电流偏置下互耦半导体激光器的混沌同步特性研究.  , 2011, 60(4): 044204. doi: 10.7498/aps.60.044204
    [13] 张拴勤, 卢言利, 石云龙. 激光吸收铒掺杂上转换材料的光谱特性实验分析.  , 2009, 58(4): 2768-2771. doi: 10.7498/aps.58.2768
    [14] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换.  , 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [15] 安 义, 王云才, 张明江, 牛生晓, 王安帮. 基于Fabry-Perot半导体激光器实现全光波长转换及其最优纵模选择.  , 2008, 57(8): 4995-5000. doi: 10.7498/aps.57.4995
    [16] 贾新鸿, 钟东洲, 王 飞, 陈海涛. 基于λ/4相移分布反馈半导体激光器四波混频的THz波长转换特性研究.  , 2007, 56(5): 2637-2646. doi: 10.7498/aps.56.2637
    [17] 黄良玉, 罗晓曙, 方锦清, 赵益波, 唐国宁. 用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制.  , 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
    [18] 江 俊, 李 宁, 陈贵宾, 陆 卫, 王明凯, 杨学平, 吴 刚, 范耀辉, 李永贵, 袁先漳. FEL诱导半导体材料非线性光吸收.  , 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [19] 郭长志, 黄永箴. 平行耦合腔波导对半导体激光器谱线宽度的控制作用.  , 1989, 38(5): 818-823. doi: 10.7498/aps.38.818
    [20] 郭长志, 黄永箴. 非线性增益和波导结构对半导体激光器的谱线宽度的作用.  , 1989, 38(5): 699-705. doi: 10.7498/aps.38.699
计量
  • 文章访问数:  9087
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-20
  • 修回日期:  2016-06-01
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map