搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆轰加载下弹塑性固体Richtmyer-Meshkov流动的扰动增长规律

殷建伟 潘昊 吴子辉 郝鹏程 胡晓棉

引用本文:
Citation:

爆轰加载下弹塑性固体Richtmyer-Meshkov流动的扰动增长规律

殷建伟, 潘昊, 吴子辉, 郝鹏程, 胡晓棉

A growth study of the Richtmyer-Meshkov flow in the elastoplastic solids under explosive loading

Yin Jian-Wei, Pan Hao, Wu Zi-Hui, Hao Peng-Cheng, Hu Xiao-Mian
PDF
导出引用
  • 研究了冲击波加载弹塑性材料扰动自由面的动力学演化过程,分析了高能炸药爆轰驱动时初始扰动与材料性质对扰动增长的影响.研究结果表明:初始扰动的振幅与波长之比越高,扰动越易增长,强度越高的材料扰动增长幅度越小;扰动增长被抑制时,尖钉的最大振幅与增长速度无量纲数之间存在线性近似关系,进一步理论分析表明尖钉的振幅增长因子与加载压力、初始扰动形态和材料强度有关,该理论关系作为扰动增长规律的线性近似在一定范围内适用于多种金属材料.
    In this paper, a theoretical analysis model is proposed for the linear growth of the Richtmyer-Meshkov instability in elastoplastic solid medium-vacuum interface under the explosion shock wave loading. The analysis of the dynamic evolution of small perturbations shows that after the initial phase inversion, some perturbations would stop growing after they have reached their maximum amplitude, some others would continue to grow and then form jetting from the solid-vacuum interfaces. Numerical simulations show excellent agreement with the experimental results of explosively-driven Richtmyer-Meshkov instability in the sample of copper. The effects of two physical factors on the maximum amplitude of spikes are also studied numerically. The first physical factor is the initial configuration of the perturbation, which is expressed as the time values of the initial wave number and initial amplitude. With increasing the value of the initial configuration, the maximum amplitudes of the spikes would become greater while the growth of perturbations is suppressed. On the other hand, the maximum amplitudes of spikes would become smaller in the solid which has a higher yield strength when the initial configuration keeps unchanged. Further investigations show that the boundary of the stage division between the stable growth and the unstable growth is revealed by a combination parameter form of the two physical factors, which is expressed as the ratio of initial configuration to yield strength. In the stable stage, the linear relation between the non-dimensional maximum amplitude and the non-dimensional maximum growth rate of the spikes is fitted with the coefficient value 0.30, which is very close to 0.29, a theoretical prediction based on the Newton's second law analysis. Considering the shock Hugoniot relations in the elastoplastic medium and the maximum growth rate equation of the Richtmyer-Meshkov instability in ideal fluid, the linear model is improved to add the effects of the loading shockwave pressure and the compression acoustic impedance of the material on the amplitude growth of the spike to the analytical model proposed by the former researchers. Extensive numerical simulations are performed to show that the linear model could accurately describe the growth factor of the spikes in the stable cases in different metal materials, such as copper, aluminum, and stain-less steels. In the numerical analysis of the scope of application of the linear model, a rough estimation of the stage division boundary between the stable and unstable growth is given as 0.8 GPa-1. When the ratio of initial configuration to yield strength is lower than the division boundary, the perturbation growth would be stable and the linear model could describe the growth law of the spikes.
      通信作者: 胡晓棉, hu_xiaomian@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11272064)资助的课题.
      Corresponding author: Hu Xiao-Mian, hu_xiaomian@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11272064).
    [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297

    [2]

    Meshkov E E 1969 Sovit. Fluid Dyn. 4 151

    [3]

    Mikaelian K O 2013 Phys. Rev. E 87 031003

    [4]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [5]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2006 Phys. Rev. E 74 037301

    [6]

    Piriz A R, Lopez Cela J J, Cortazar O D, Tahir N A, Hoffmann D H H 2005 Phys. Rev. E 72 056313

    [7]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2008 Phys. Rev. E 78 056401

    [8]

    Piriz A R, Lopez Cela J J, Tahir N A 2009 Phys. Rev. E 80 046305

    [9]

    Lopez Ortega A, Lombardini M, Pullin D I, Meiron D I 2014 Phys. Rev. E 89 033018

    [10]

    Remington B A, Rudd E R, Wark J S 2015 Phys. Plasmas 22 090501

    [11]

    Buttler W T, Oro D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [12]

    Buttler W T, Oro D M, Olsen R T, Cheren F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519

    [13]

    Dimonte G, Terrones G, Cheren F J, Germann T C, Dunpont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502

    [14]

    Jensen B J, Cheren F J, Prime M B, Fezzaa K, Iverson A J, Carlson C A, Yeager J D, Ramos K J, Hooks D E, Cooley J C, Dimonte G 2015 J. Appl. Phys. 118 195903

    [15]

    Sun Z F, Xu H, Li Q Z, Zhang C Y 2010 Chin. J. High Pressure Phys. 24 55 (in Chinese)[孙占峰, 徐辉, 李庆忠, 张崇玉2010高压 24 55]

    [16]

    Robinson A C, Swegle J W, 1989 J. Appl. Phys. 66 2838

    [17]

    Zhu J S, Hu X M, Wang P, Chen J, Xu A G 2010 Adv. Mech. 40 400 (in Chinese)[朱建士, 胡晓棉, 王裴, 陈军, 许爱国2010力学进展40 400]

    [18]

    Vogler T J, Chhabildas L C 2006 Int. J. Impact Engng. 33 812

    [19]

    Barton N R, Bernier J V, Becker R, Arsenlis A, Cavallo R, Marian J, Rhee M, Park H S, Remington B A, Olson R T 2011 J. Appl. Phys. 109 073501

    [20]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Blome C A, Collins G W 2011 J. Appl. Phys. 110 123515

    [21]

    Park H S, Rudd R E, Cavallo R M, Barton N R, Arsenlis A, Belof J L, Blobaum K J M, El-dasher B S, Florando J N, Huntington C M, Maddox B R, May M J, Plechaty C, Prisbrey S T, Remington B A, Wallace R J, Wehrenberg C E, Wilson M J, Comley A J, Giraldex E, Nikroo A, Farrell M, Randall G, Gray III G T 2015 Phys. Rev. Lett. 114 065502

    [22]

    Wouchuk J G 2001 Phys. Rev. E 63 056303

    [23]

    Pan H, Wu Z H, Hu X M, Yang K 2013 Chin. J. High Pressure Phys. 27 778 (in Chinese)[潘昊, 吴子辉, 胡晓棉, 杨堃2013高压 27 778]

    [24]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese)[潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强2012 61 206401]

    [25]

    Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖, 谭华, 胡建波, 戴诚达, 陈大年, 王焕然2008 57 2352]

    [26]

    Colvin J D, Legrand M, Remington B A, Schurtz G, Weber S V 2003 J. Appl. Phys. 93 5287

  • [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297

    [2]

    Meshkov E E 1969 Sovit. Fluid Dyn. 4 151

    [3]

    Mikaelian K O 2013 Phys. Rev. E 87 031003

    [4]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [5]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2006 Phys. Rev. E 74 037301

    [6]

    Piriz A R, Lopez Cela J J, Cortazar O D, Tahir N A, Hoffmann D H H 2005 Phys. Rev. E 72 056313

    [7]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2008 Phys. Rev. E 78 056401

    [8]

    Piriz A R, Lopez Cela J J, Tahir N A 2009 Phys. Rev. E 80 046305

    [9]

    Lopez Ortega A, Lombardini M, Pullin D I, Meiron D I 2014 Phys. Rev. E 89 033018

    [10]

    Remington B A, Rudd E R, Wark J S 2015 Phys. Plasmas 22 090501

    [11]

    Buttler W T, Oro D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [12]

    Buttler W T, Oro D M, Olsen R T, Cheren F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519

    [13]

    Dimonte G, Terrones G, Cheren F J, Germann T C, Dunpont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502

    [14]

    Jensen B J, Cheren F J, Prime M B, Fezzaa K, Iverson A J, Carlson C A, Yeager J D, Ramos K J, Hooks D E, Cooley J C, Dimonte G 2015 J. Appl. Phys. 118 195903

    [15]

    Sun Z F, Xu H, Li Q Z, Zhang C Y 2010 Chin. J. High Pressure Phys. 24 55 (in Chinese)[孙占峰, 徐辉, 李庆忠, 张崇玉2010高压 24 55]

    [16]

    Robinson A C, Swegle J W, 1989 J. Appl. Phys. 66 2838

    [17]

    Zhu J S, Hu X M, Wang P, Chen J, Xu A G 2010 Adv. Mech. 40 400 (in Chinese)[朱建士, 胡晓棉, 王裴, 陈军, 许爱国2010力学进展40 400]

    [18]

    Vogler T J, Chhabildas L C 2006 Int. J. Impact Engng. 33 812

    [19]

    Barton N R, Bernier J V, Becker R, Arsenlis A, Cavallo R, Marian J, Rhee M, Park H S, Remington B A, Olson R T 2011 J. Appl. Phys. 109 073501

    [20]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Blome C A, Collins G W 2011 J. Appl. Phys. 110 123515

    [21]

    Park H S, Rudd R E, Cavallo R M, Barton N R, Arsenlis A, Belof J L, Blobaum K J M, El-dasher B S, Florando J N, Huntington C M, Maddox B R, May M J, Plechaty C, Prisbrey S T, Remington B A, Wallace R J, Wehrenberg C E, Wilson M J, Comley A J, Giraldex E, Nikroo A, Farrell M, Randall G, Gray III G T 2015 Phys. Rev. Lett. 114 065502

    [22]

    Wouchuk J G 2001 Phys. Rev. E 63 056303

    [23]

    Pan H, Wu Z H, Hu X M, Yang K 2013 Chin. J. High Pressure Phys. 27 778 (in Chinese)[潘昊, 吴子辉, 胡晓棉, 杨堃2013高压 27 778]

    [24]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese)[潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强2012 61 206401]

    [25]

    Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖, 谭华, 胡建波, 戴诚达, 陈大年, 王焕然2008 57 2352]

    [26]

    Colvin J D, Legrand M, Remington B A, Schurtz G, Weber S V 2003 J. Appl. Phys. 93 5287

  • [1] 徐波, 田永君. 塑性热电材料研究进展及展望.  , 2024, 73(20): 206201. doi: 10.7498/aps.73.20241129
    [2] 孙贝贝, 叶文华, 张维岩. 密度扰动的类Richtmyer-Meshkov不稳定性增长及其与无扰动界面耦合的数值模拟.  , 2023, 72(19): 194701. doi: 10.7498/aps.72.20230928
    [3] 李碧勇, 彭建祥, 谷岩, 贺红亮. 爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性实验研究.  , 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [4] 李林利, 薛春霞. 压电材料双曲壳热弹耦合作用下的混沌运动.  , 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [5] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质.  , 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [6] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正.  , 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [7] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉. 爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性.  , 2017, 66(20): 204701. doi: 10.7498/aps.66.204701
    [8] 王宏明, 李沛思, 郑瑞, 李桂荣, 袁雪婷. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制.  , 2015, 64(8): 087104. doi: 10.7498/aps.64.087104
    [9] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮. 设计脆性材料的冲击塑性.  , 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [10] 杨海滨, 李岳, 赵宏刚, 温激鸿, 温熙森. 一种含圆柱形谐振散射体的黏弹材料低频吸声机理研究.  , 2013, 62(15): 154301. doi: 10.7498/aps.62.154301
    [11] 杨彦楠, 王新强, 卢励吾, 黄呈橙, 许福军, 沈波. InAlN材料表面态性质研究.  , 2013, 62(17): 177302. doi: 10.7498/aps.62.177302
    [12] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质.  , 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [13] 张凤国, 周洪强, 张广财, 洪滔. 惯性及弹塑性效应对延性金属材料层裂损伤的影响.  , 2011, 60(7): 074601. doi: 10.7498/aps.60.074601
    [14] 张洪亮, 雷海乐, 唐永建, 罗江山, 李恺, 邓晓臣. 纳米结构Cu固体材料的低温热容性能研究.  , 2010, 59(1): 471-475. doi: 10.7498/aps.59.471
    [15] 刘冬梅, 韩鹏. 含单负特异材料一维无序扰动周期结构中的光子局域特性研究.  , 2010, 59(10): 7066-7072. doi: 10.7498/aps.59.7066
    [16] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用.  , 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [17] 王参军, 魏 群, 郑宝兵, 梅冬成. 色噪声驱动的肿瘤细胞增长系统的瞬态性质:平均首通时间.  , 2008, 57(3): 1375-1380. doi: 10.7498/aps.57.1375
    [18] 贾佑华, 纪宪明, 印建平. 影响固体材料激光冷却若干因素的研究.  , 2007, 56(3): 1770-1774. doi: 10.7498/aps.56.1770
    [19] 黄劲松, 董 逊, 刘祥林, 徐仲英, 葛维琨. AlInGaN材料的生长及其光学性质的研究.  , 2003, 52(10): 2632-2637. doi: 10.7498/aps.52.2632
    [20] 陶卫东, 夏海平, 白贵儒, 董建峰, 聂秋华. 固体手性材料的研制及其特性测试.  , 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
计量
  • 文章访问数:  5590
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-03
  • 修回日期:  2017-01-06
  • 刊出日期:  2017-04-05

/

返回文章
返回
Baidu
map