搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过量B的Ta/CoFeB/MgO薄膜垂直各向异性和温度稳定性的增强

常远思 李刚 张颖 蔡建旺

引用本文:
Citation:

过量B的Ta/CoFeB/MgO薄膜垂直各向异性和温度稳定性的增强

常远思, 李刚, 张颖, 蔡建旺

Large enhanced perpendicular magnetic anisotropy and thermal stability in Ta/CoFeB/MgO films with excess boron

Chang Yuan-Si, Li Gang, Zhang Ying, Cai Jian-Wang
PDF
导出引用
  • 以CoFeB/MgO为核心单元的垂直各向异性薄膜体系和相关的垂直磁隧道结已获得广泛研究,其中CoFeB的B含量基本都保持为原子比20%.本文采用磁控溅射制备了Ta/(Co0.5Fe0.5)1-xBx/MgO三明治结构及生长顺序相反的系列薄膜,并在573623 K进行真空退火,研究了样品垂直各向异性随B成分的变化.结果显示,当B含量减小到10%时,Ta/CoFeB/MgO体系的垂直各向异性明显降低;相反,当B含量增加至30%时,该体系的垂直各向异性明显增强;发现在高B含量的情形下,样品的垂直各向异性大小与温度稳定性均与三明治结构的生长顺序密切相关;获得了具有优异温度稳定性的垂直磁化MgO/CoFeB/Ta样品.结果表明适当增加B含量是增强CoFeB/MgO体系垂直各向异性和温度稳定性的有效途径之一.
    The discovery of perpendicular magnetic anisotropy(PMA) in Ta/CoFeB/MgO film and the demonstration of high performance perpendicular magnetic tunnel junction(p-MTJ) based on this material system have accelerated the development of the next-generation high-density non-volatile memories and other spintronic devices. Currently it is urgently needed to improve the interfacial PMA and thermal stability of the CoFeB/MgO system for practical applications. So far, the perpendicularly magnetized CoFeB/MgO films and the corresponding p-MTJs have been extensively explored with the B content of the CoFeB layer mostly fixed at about 20 atomic percent. In this paper, four sets of multilayered films Ta/(Co0.5Fe0.5)1-xBx/MgO(x=0.1, 0.2, 0.3) and MgO/(Co0.5Fe0.5)0.7B0.3/Ta with different CoFeB thickness are deposited on thermally oxidized Si substrates by magnetron sputtering at room temperature, and subsequently they are annealed in high vacuum at different temperatures ranging from 573 to 623 K. The room temperature magnetic properties of the annealed samples are characterized by using vibrating sample magnetometer and superconducting quantum interference device magnetometer. With normal B content of 20% for the CoFeB layer, the Ta/CoFeB/MgO structure annealed at 573 K shows perpendicular magnetization when the CoFeB layer is no thicker than 1.2 nm. As the B content decreases to 10%, it has been found that PMA is achieved only in the sample with a 0.8 nm CoFeB layer under the same annealing condition. The result shows that the interfacial PMA appreciably falls off when the B content is reduced by half. On the other hand, when the B content of the CoFeB layers increases from 20% to 30%, the Ta/CoFeB/MgO structure annealed at 573 K exhibits PMA with the CoFeB layer as thick as 1.4 nm and the interfacial PMA(Ks) increases from 1.710-3 Jm-2 to 1.910-3 Jm-2 together with slightly improved thermal stability. Most remarkably, the MgO/CoFeB/Ta structure with 30% B shows optimum annealing temperature of about 623 K, at which Ks reaches 2.010-3Jm-2 and PMA is realized in the samples with the CoFeB thickness up to 1.5 nm. In contrast, the same structure with 20% B is magnetically destroyed completely under this annealing temperature. The present results suggest that the CoFeB layer with excess B can effectively improve the perpendicular magnetic properties and thermal stability for the Ta/CoFeB/MgO system, and one should take into account the B content effect to optimize the spintronic devices based on the perpendicularly magnetized CoFeB/MgO system.
      通信作者: 蔡建旺, jwcai@aphy.iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51371191,11374349,51431009)资助的课题.
      Corresponding author: Cai Jian-Wang, jwcai@aphy.iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 51371191, 11374349, 51431009).
    [1]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246

    [2]

    Ohmori H, Hatori T, Nakagawa S 2008 J. Appl. Phys. 103 07A911

    [3]

    Yoshikawa M, Kitagawa E, Nagase T, Daibou T, Nagamine M, Nishiyama K, Kishi T, Yoda H 2008 IEEE Trans. Magn. 44 2573

    [4]

    Kim G, Sakuraba Y, Oogane M, Ando Y, Miyazaki T, Oogane M, Ando Y, Miyazaki T 2008 Appl. Phys. Lett. 92 172502

    [5]

    Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese)[冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华2009 58 3503]

    [6]

    Liu N, Wang H, Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese)[刘娜, 王海, 朱涛2012 61 167504]

    [7]

    Yakushiji K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Andoet K 2010 Appl. Phys. Lett. 97 232508

    [8]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2008 Appl. Phys. Lett. 92 102508

    [9]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [10]

    Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501

    [11]

    Liu T, Cai J W, Sun L 2012 AIP Adv. 2 032151

    [12]

    Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Reports 4 5895

    [13]

    Pai C F, Nguyen M H, Belvin C, Vilela-Leão L H, Ralph D C, Buhrman R A 2014 Appl. Phys. Lett. 104 082407

    [14]

    Almasi H, Hickey D R, Newhouse-Illige T, Xu M, Rosales M R, Nahar S, Held J T, Mkhoyan K A, Wang W G 2015 Appl. Phys. Lett. 106 182406

    [15]

    Lee Y M, Hayakawa J, Ikeda S, Matsukura F, Ohno H 2007 Appl. Phys. Lett. 90 212507

    [16]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

  • [1]

    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246

    [2]

    Ohmori H, Hatori T, Nakagawa S 2008 J. Appl. Phys. 103 07A911

    [3]

    Yoshikawa M, Kitagawa E, Nagase T, Daibou T, Nagamine M, Nishiyama K, Kishi T, Yoda H 2008 IEEE Trans. Magn. 44 2573

    [4]

    Kim G, Sakuraba Y, Oogane M, Ando Y, Miyazaki T, Oogane M, Ando Y, Miyazaki T 2008 Appl. Phys. Lett. 92 172502

    [5]

    Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese)[冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华2009 58 3503]

    [6]

    Liu N, Wang H, Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese)[刘娜, 王海, 朱涛2012 61 167504]

    [7]

    Yakushiji K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Andoet K 2010 Appl. Phys. Lett. 97 232508

    [8]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2008 Appl. Phys. Lett. 92 102508

    [9]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [10]

    Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501

    [11]

    Liu T, Cai J W, Sun L 2012 AIP Adv. 2 032151

    [12]

    Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Reports 4 5895

    [13]

    Pai C F, Nguyen M H, Belvin C, Vilela-Leão L H, Ralph D C, Buhrman R A 2014 Appl. Phys. Lett. 104 082407

    [14]

    Almasi H, Hickey D R, Newhouse-Illige T, Xu M, Rosales M R, Nahar S, Held J T, Mkhoyan K A, Wang W G 2015 Appl. Phys. Lett. 106 182406

    [15]

    Lee Y M, Hayakawa J, Ikeda S, Matsukura F, Ohno H 2007 Appl. Phys. Lett. 90 212507

    [16]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

  • [1] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运.  , 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [2] 陈传文, 项阳. 正交各向异性双层交换弹簧薄膜的磁矩分布.  , 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [3] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究.  , 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [4] 俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华. 磁性多层膜CoFeB/Ni的垂直磁各向异性研究.  , 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [5] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究.  , 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [6] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究.  , 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [7] 于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲. Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响.  , 2015, 64(24): 247504. doi: 10.7498/aps.64.247504
    [8] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究.  , 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [9] 马 强, 江建军, 别少伟, 杜 刚, 冯则坤, 何华辉. CoFeB/MgO不连续多层纳米软磁薄膜微波电磁特性.  , 2008, 57(10): 6577-6581. doi: 10.7498/aps.57.6577
    [10] 张丽娇, 蔡建旺. 室温生长MgO底层诱导(001)取向FePt薄膜的有序化过程对FePt成分的依赖.  , 2007, 56(12): 7266-7273. doi: 10.7498/aps.56.7266
    [11] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性.  , 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [12] 翟中海, 滕 蛟, 李宝河, 王立锦, 于广华, 朱逢吾. 具有垂直各向异性(Pt/Co)n/FeMn多层膜的交换偏置.  , 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [13] 张建民, 徐可为, 张美荣. 薄膜中异常晶粒生长理论及能量各向异性分析.  , 2003, 52(5): 1207-1212. doi: 10.7498/aps.52.1207
    [14] 唐云俊, B.F.P.Roos, B.Hillebrands, 赵宏武, 詹文山. Fe/MnPd薄膜各向异性和矫顽力的研究.  , 2000, 49(5): 997-1001. doi: 10.7498/aps.49.997
    [15] 熊湘沅, 何开元. Fe-Cu-Nb-Si—B纳米晶合金的有效磁各向异性随退火温度的变化.  , 1995, 44(8): 1286-1290. doi: 10.7498/aps.44.1286
    [16] 李华, 姜寿亭, 梅良模, 高汝伟. Nd2Fe14B化合物磁晶各向异性起源的理论研究.  , 1993, 42(7): 1179-1185. doi: 10.7498/aps.42.1179
    [17] 王瑞平, 黄大金, 石勤伟, 许鹏, 陈琦, 顾根大, 蔡维理, 周贵恩, 阮耀钟. Bi2Sr2CaCu2O8单晶a-b平面热电势率的各向异性.  , 1992, 41(7): 1147-1150. doi: 10.7498/aps.41.1147
    [18] 李华;姜寿亭;梅良模;高汝伟. Nd_2Fe_14_B化合物磁晶各向异性起源的理论研究.  , 1991, 40(7): 1179-1185. doi: 10.7498/aps.40.1179
    [19] 关鹏, 刘宜华, 郭贻诚. Co-Zr非晶薄膜的磁感生各向异性.  , 1989, 38(12): 2029-2033. doi: 10.7498/aps.38.2029
    [20] 陈笃行. 金属玻璃(Fe1-xCox)78Si10B12的感生各向异性.  , 1984, 33(10): 1359-1367. doi: 10.7498/aps.33.1359
计量
  • 文章访问数:  6479
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-24
  • 修回日期:  2016-11-22
  • 刊出日期:  2017-01-05

/

返回文章
返回
Baidu
map