-
以CoFeB/MgO为核心单元的垂直各向异性薄膜体系和相关的垂直磁隧道结已获得广泛研究,其中CoFeB的B含量基本都保持为原子比20%.本文采用磁控溅射制备了Ta/(Co0.5Fe0.5)1-xBx/MgO三明治结构及生长顺序相反的系列薄膜,并在573623 K进行真空退火,研究了样品垂直各向异性随B成分的变化.结果显示,当B含量减小到10%时,Ta/CoFeB/MgO体系的垂直各向异性明显降低;相反,当B含量增加至30%时,该体系的垂直各向异性明显增强;发现在高B含量的情形下,样品的垂直各向异性大小与温度稳定性均与三明治结构的生长顺序密切相关;获得了具有优异温度稳定性的垂直磁化MgO/CoFeB/Ta样品.结果表明适当增加B含量是增强CoFeB/MgO体系垂直各向异性和温度稳定性的有效途径之一.
-
关键词:
- 垂直各向异性 /
- CoFeB/MgO薄膜 /
- B成分
The discovery of perpendicular magnetic anisotropy(PMA) in Ta/CoFeB/MgO film and the demonstration of high performance perpendicular magnetic tunnel junction(p-MTJ) based on this material system have accelerated the development of the next-generation high-density non-volatile memories and other spintronic devices. Currently it is urgently needed to improve the interfacial PMA and thermal stability of the CoFeB/MgO system for practical applications. So far, the perpendicularly magnetized CoFeB/MgO films and the corresponding p-MTJs have been extensively explored with the B content of the CoFeB layer mostly fixed at about 20 atomic percent. In this paper, four sets of multilayered films Ta/(Co0.5Fe0.5)1-xBx/MgO(x=0.1, 0.2, 0.3) and MgO/(Co0.5Fe0.5)0.7B0.3/Ta with different CoFeB thickness are deposited on thermally oxidized Si substrates by magnetron sputtering at room temperature, and subsequently they are annealed in high vacuum at different temperatures ranging from 573 to 623 K. The room temperature magnetic properties of the annealed samples are characterized by using vibrating sample magnetometer and superconducting quantum interference device magnetometer. With normal B content of 20% for the CoFeB layer, the Ta/CoFeB/MgO structure annealed at 573 K shows perpendicular magnetization when the CoFeB layer is no thicker than 1.2 nm. As the B content decreases to 10%, it has been found that PMA is achieved only in the sample with a 0.8 nm CoFeB layer under the same annealing condition. The result shows that the interfacial PMA appreciably falls off when the B content is reduced by half. On the other hand, when the B content of the CoFeB layers increases from 20% to 30%, the Ta/CoFeB/MgO structure annealed at 573 K exhibits PMA with the CoFeB layer as thick as 1.4 nm and the interfacial PMA(Ks) increases from 1.710-3 Jm-2 to 1.910-3 Jm-2 together with slightly improved thermal stability. Most remarkably, the MgO/CoFeB/Ta structure with 30% B shows optimum annealing temperature of about 623 K, at which Ks reaches 2.010-3Jm-2 and PMA is realized in the samples with the CoFeB thickness up to 1.5 nm. In contrast, the same structure with 20% B is magnetically destroyed completely under this annealing temperature. The present results suggest that the CoFeB layer with excess B can effectively improve the perpendicular magnetic properties and thermal stability for the Ta/CoFeB/MgO system, and one should take into account the B content effect to optimize the spintronic devices based on the perpendicularly magnetized CoFeB/MgO system.-
Keywords:
- perpendicular magnetic anisotropy /
- CoFeB/MgO film /
- B content
[1] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246
[2] Ohmori H, Hatori T, Nakagawa S 2008 J. Appl. Phys. 103 07A911
[3] Yoshikawa M, Kitagawa E, Nagase T, Daibou T, Nagamine M, Nishiyama K, Kishi T, Yoda H 2008 IEEE Trans. Magn. 44 2573
[4] Kim G, Sakuraba Y, Oogane M, Ando Y, Miyazaki T, Oogane M, Ando Y, Miyazaki T 2008 Appl. Phys. Lett. 92 172502
[5] Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese)[冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华2009 58 3503]
[6] Liu N, Wang H, Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese)[刘娜, 王海, 朱涛2012 61 167504]
[7] Yakushiji K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Andoet K 2010 Appl. Phys. Lett. 97 232508
[8] Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2008 Appl. Phys. Lett. 92 102508
[9] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721
[10] Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501
[11] Liu T, Cai J W, Sun L 2012 AIP Adv. 2 032151
[12] Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Reports 4 5895
[13] Pai C F, Nguyen M H, Belvin C, Vilela-Leão L H, Ralph D C, Buhrman R A 2014 Appl. Phys. Lett. 104 082407
[14] Almasi H, Hickey D R, Newhouse-Illige T, Xu M, Rosales M R, Nahar S, Held J T, Mkhoyan K A, Wang W G 2015 Appl. Phys. Lett. 106 182406
[15] Lee Y M, Hayakawa J, Ikeda S, Matsukura F, Ohno H 2007 Appl. Phys. Lett. 90 212507
[16] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508
-
[1] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246
[2] Ohmori H, Hatori T, Nakagawa S 2008 J. Appl. Phys. 103 07A911
[3] Yoshikawa M, Kitagawa E, Nagase T, Daibou T, Nagamine M, Nishiyama K, Kishi T, Yoda H 2008 IEEE Trans. Magn. 44 2573
[4] Kim G, Sakuraba Y, Oogane M, Ando Y, Miyazaki T, Oogane M, Ando Y, Miyazaki T 2008 Appl. Phys. Lett. 92 172502
[5] Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese)[冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华2009 58 3503]
[6] Liu N, Wang H, Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese)[刘娜, 王海, 朱涛2012 61 167504]
[7] Yakushiji K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Andoet K 2010 Appl. Phys. Lett. 97 232508
[8] Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2008 Appl. Phys. Lett. 92 102508
[9] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721
[10] Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501
[11] Liu T, Cai J W, Sun L 2012 AIP Adv. 2 032151
[12] Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Reports 4 5895
[13] Pai C F, Nguyen M H, Belvin C, Vilela-Leão L H, Ralph D C, Buhrman R A 2014 Appl. Phys. Lett. 104 082407
[14] Almasi H, Hickey D R, Newhouse-Illige T, Xu M, Rosales M R, Nahar S, Held J T, Mkhoyan K A, Wang W G 2015 Appl. Phys. Lett. 106 182406
[15] Lee Y M, Hayakawa J, Ikeda S, Matsukura F, Ohno H 2007 Appl. Phys. Lett. 90 212507
[16] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508
计量
- 文章访问数: 6479
- PDF下载量: 312
- 被引次数: 0