-
提出了基于现场可编程门阵列 (FPGA) 技术的混沌直接序列扩频信号盲解调的硬件电路实现方法. 设计了混沌直接序列扩频信号发射机与接收机. 发射机可产生10种不同的混沌直接序列扩频信号. 为方便接收机的硬件电路实现, 对无先导卡尔曼滤波混沌拟合盲解调算法进行了简化, 在简化模型的基础上设计了接收机硬件结构. 提出了一种动态调整偏移因子的新方法, 使接收机能实时适应混沌映射的变化. 通过高斯白噪声信道及多径信道条件下的盲解调实验, 验证了盲解调算法硬件实现的抗噪声与抗多径性能, 以及对10种不同的混沌直接序列扩频信号的自适应破译效果.
-
关键词:
- FPGA /
- 混沌直接序列扩频通信 /
- 盲解调
In this paper, we design a field-programmable gate array (FPGA)-based hardware implementation for blind demodulation method for chaotic direct sequence spread spectrum (CD3S) signals. Both transmitter and receiver are designed. The transmitter can produce ten chaotic maps as the spreading sequence. In the receiver, the mathematic model of unscented Kalman filter (UKF) chaotic fitting is built and simplified for hardware implementation. The hardware structure of the receiver is based on this simplified model. For real time fitting different chaotic maps, a dynamic adjustment strategy of range-differentiating factor is proposed. The additove white Gausian noise (AWGN) and multipath channel experiments verify the anti-noise and anti-multipath performance of the UKF chaotic fitting method on one hand. On the other hand, the experiments verify the method can demodulate CD3S signals spread by all ten chaotic maps effectively.-
Keywords:
- field-programmable gate array /
- chaotic direct sequence spread spectrum signal /
- blind demodulation
[1] Heidari-Bateni G, McGillem C D 1994 IEEE Trans. on Communications 421524
[2] Parlits U, Ergezinger S 1994 Phys. Lett. A 188 146
[3] Azou S, Burel G, Le Duff L, Pistre C 2003 Oceans Conf. Rec. IEEE San Diego, USA 22-26 September, 2003 p1539
[4] Hu J F, Guo J B 2008 Acta Phys. Sin. 57 1477 (in Chinese) [胡进峰, 郭静波 2008 57 1477]
[5] Hu J F, Guo J B 2008 Chaos 18 013121
[6] Bai L, Guo J B 2011 Acta Phys. Sin. 60 070504 (in Chinese) [白鹭, 郭静波 2011 60 070504]
[7] Xu X Z, Guo J B 2011 Acta Phys. Sin. 60 020510 (in Chinese) [徐新智, 郭静波 2011 60 020510]
[8] Gan L, Xiong B 2012 Acta Phys. Sin. 61 210504 (in Chinese) [甘露, 熊波 2012 61 210504]
[9] Zhou W J, Yu S M 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰, 禹思敏 2009 58 113]
[10] Liu Q, Fang J Q, Zhao G, Li Y 2012 Acta Phys. Sin. 61 130508 (in Chinese) [刘强, 方锦清, 赵耿, 李永 2012 61 130508]
[11] Zhang C X, Yu S M 2010 Acta Phys. Sin. 59 3017 (in Chinese) [张朝霞, 禹思敏 2010 59 3017]
[12] Dong G G, Zheng S, Tian L X, Du R J 2010 Chin. Phys. Lett. 27 020507
[13] Liu X Y 2009 Chin. Phys. Lett. 26 090504
[14] Shi Z G, Ran L X, Chen K S 2005 Chin. Phys. Lett. 22 1336
[15] Proakis J 2005 Digital Communications (4th Edn.) (Mc Graw Hill) p766-771
[16] Chu P P, Jones R E 1999 Proc. Military and Aerospace Applications of Programming Devices and Techniques Conf. Laurel, MD, 1999
-
[1] Heidari-Bateni G, McGillem C D 1994 IEEE Trans. on Communications 421524
[2] Parlits U, Ergezinger S 1994 Phys. Lett. A 188 146
[3] Azou S, Burel G, Le Duff L, Pistre C 2003 Oceans Conf. Rec. IEEE San Diego, USA 22-26 September, 2003 p1539
[4] Hu J F, Guo J B 2008 Acta Phys. Sin. 57 1477 (in Chinese) [胡进峰, 郭静波 2008 57 1477]
[5] Hu J F, Guo J B 2008 Chaos 18 013121
[6] Bai L, Guo J B 2011 Acta Phys. Sin. 60 070504 (in Chinese) [白鹭, 郭静波 2011 60 070504]
[7] Xu X Z, Guo J B 2011 Acta Phys. Sin. 60 020510 (in Chinese) [徐新智, 郭静波 2011 60 020510]
[8] Gan L, Xiong B 2012 Acta Phys. Sin. 61 210504 (in Chinese) [甘露, 熊波 2012 61 210504]
[9] Zhou W J, Yu S M 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰, 禹思敏 2009 58 113]
[10] Liu Q, Fang J Q, Zhao G, Li Y 2012 Acta Phys. Sin. 61 130508 (in Chinese) [刘强, 方锦清, 赵耿, 李永 2012 61 130508]
[11] Zhang C X, Yu S M 2010 Acta Phys. Sin. 59 3017 (in Chinese) [张朝霞, 禹思敏 2010 59 3017]
[12] Dong G G, Zheng S, Tian L X, Du R J 2010 Chin. Phys. Lett. 27 020507
[13] Liu X Y 2009 Chin. Phys. Lett. 26 090504
[14] Shi Z G, Ran L X, Chen K S 2005 Chin. Phys. Lett. 22 1336
[15] Proakis J 2005 Digital Communications (4th Edn.) (Mc Graw Hill) p766-771
[16] Chu P P, Jones R E 1999 Proc. Military and Aerospace Applications of Programming Devices and Techniques Conf. Laurel, MD, 1999
计量
- 文章访问数: 7134
- PDF下载量: 930
- 被引次数: 0