搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双Pearcey光束的构建及数学机理研究

任志君 李晓东 金洪震 施逸乐 杨照清

引用本文:
Citation:

双Pearcey光束的构建及数学机理研究

任志君, 李晓东, 金洪震, 施逸乐, 杨照清

Construction of Bi-Pearcey beams and their mathematical mechanism

Ren Zhi-Jun, Li Xiao-Dong, Jin Hong-Zhen, Shi Yi-Le, Yang Zhao-Qing
PDF
导出引用
  • 通过推导椭圆线的菲涅耳衍射分布,得到了形如Pearcey函数的数学表达式.通过数值模拟和实验产生,发现椭圆光环经菲涅耳衍射后形成的Pearcey光束外形上很像两个经典Pearcey光束面对面组合而成,我们把它命名为双Pearcey光束,这是形式不变Pearcey光束家族的新成员.随后,利用数学突变理论,给出了双Pearcey光束所具有的光学拓扑结构的数学机理和相应表达式.
    We present a theoretical expression in the form of the Pearcey function by deducing the Fresnel diffraction distribution of an elliptic line. Then, we numerically simulate and experimentally generate this kind of new Pearcey beams by using the Fresnel diffraction of optical ellipse line. This kind of beams can be referred to as Bi-Pearcey beams because their appearance of the topological structure is very similar to the combination of two face-to-face classical Pearcey beams. It is no doubt that so-called Bi-Pearcey beams are the new member of a family of form-invariant Pearcey beams. Subsequently, we also provide the theoretical mechanism of generating Bi-Pearcey beams based on the Zeeman catastrophe machine of catastrophic theory. By solving the critical equation of potential function of Bi-Pearcey beams generated by an ellipse line, we find that the optical morphogenesis of Bi-Pearcey beams is determined by the number of roots of the critical equation. The critical equation of potential function of Bi-Pearcey beams is a classical Cartan equation, which has at most three real roots. For the Fresnel diffraction of ellipse line, three real roots of the critical equation are corresponding to three stable points and represent three diffraction lines, hence they can be used to examine the optical topological structure of Bi-Pearcey beams. By choosing the appropriate control variable of Bi-Pearcey beams, two diffraction lines of an ellipse line overlap, and the strong caustic line of Bi-Pearcey beams is correspondingly generated when the two of the three real roots of the critical equation are equal. If the three real roots of the critical equation are all equal, the strongest cusps of Bi-Pearcey beams are generated, accordingly. Moreover, the equation of the caustic line and their positions of four cusps of Bi-Pearcey beams are given by solving the control variable equation of Bi-Pearcey beams. In conclusion, we elucidate the mathematical mechanism of topical morphogenesis of Bi-Pearcey beams based on catastrophic theory.
      通信作者: 任志君, renzhijun@zjnu.cn
    • 基金项目: 国家自然科学基金(批准号:11274278,11674288)资助的课题.
      Corresponding author: Ren Zhi-Jun, renzhijun@zjnu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11274278, 11674288).
    [1]

    Durnin J 1987 Phys. Rev. Lett. 58 1499

    [2]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [3]

    Lorenser D, Singe C, Curatolo A, Sampson D D 2014 Opt. Lett. 39 548

    [4]

    Yan Z, Jureller J E, Sweet J, Guffey M J, Pelton M, Scherer N F 2012 Nano Lett. 12 5155

    [5]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [6]

    Vettenburg T, Dalgarno H I C, Nylk J, Coll-Lladó C, Ferrier D E K, Cizmár T, Gunn-Moore F J, Dholakia K 2014 Nat. Methods 11 541

    [7]

    Born M, Wolf E(translated by Yang J S) 2006 Principles of Optics (Beijing:Electronic Industry Press)(in Chinese)[波恩, 沃耳夫著(杨葭荪译) 2006光学原理(北京:电子工业出版社)]

    [8]

    Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S 2000 Opt. Lett. 25 1493

    [9]

    Siegman A E 1986 Lasers (Mill Valley:University Science Books)

    [10]

    Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K, Dennis M R 2012 Opt. Express 20 18955

    [11]

    Ren Z J, Li X D, Jin H Z 2015 Acta Phys. Sin. 64 234205(in Chinese)[任志君, 李晓东, 金洪震2015 64 234205]

    [12]

    Kovalev A A, Kotlyar V V, Zaskanov S G, Porfirev A P 2015 J. Opt. 17 035604

    [13]

    Poston T, Stewart I 1976 Catastrophe Theory and its Applications (London:Pitman Publishing)

    [14]

    Stamens J J, Spjelkavik B 1983 Opt. Acta 30 1331

    [15]

    Editing Group for Math Manual 1979 Math Manual (Beijing:Higher Education Press)(in Chinese)[数学手册编写组1979数学手册(北京:高等教育出版社)]

    [16]

    Nye J, Wright F J 1999 Natural Focusing and Fine Structure of Light:Caustics and Wave Dislocations (Bristol:Institute of Physics Publishing)

    [17]

    Vallée O, Soares M 2004 Airy Functions and Applications to Physics (London:Imperial College Press)

    [18]

    Le Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205(in Chinese)[乐阳阳, 肖寒, 王子潇, 吴敏2013 62 044205]

    [19]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

  • [1]

    Durnin J 1987 Phys. Rev. Lett. 58 1499

    [2]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [3]

    Lorenser D, Singe C, Curatolo A, Sampson D D 2014 Opt. Lett. 39 548

    [4]

    Yan Z, Jureller J E, Sweet J, Guffey M J, Pelton M, Scherer N F 2012 Nano Lett. 12 5155

    [5]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [6]

    Vettenburg T, Dalgarno H I C, Nylk J, Coll-Lladó C, Ferrier D E K, Cizmár T, Gunn-Moore F J, Dholakia K 2014 Nat. Methods 11 541

    [7]

    Born M, Wolf E(translated by Yang J S) 2006 Principles of Optics (Beijing:Electronic Industry Press)(in Chinese)[波恩, 沃耳夫著(杨葭荪译) 2006光学原理(北京:电子工业出版社)]

    [8]

    Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S 2000 Opt. Lett. 25 1493

    [9]

    Siegman A E 1986 Lasers (Mill Valley:University Science Books)

    [10]

    Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K, Dennis M R 2012 Opt. Express 20 18955

    [11]

    Ren Z J, Li X D, Jin H Z 2015 Acta Phys. Sin. 64 234205(in Chinese)[任志君, 李晓东, 金洪震2015 64 234205]

    [12]

    Kovalev A A, Kotlyar V V, Zaskanov S G, Porfirev A P 2015 J. Opt. 17 035604

    [13]

    Poston T, Stewart I 1976 Catastrophe Theory and its Applications (London:Pitman Publishing)

    [14]

    Stamens J J, Spjelkavik B 1983 Opt. Acta 30 1331

    [15]

    Editing Group for Math Manual 1979 Math Manual (Beijing:Higher Education Press)(in Chinese)[数学手册编写组1979数学手册(北京:高等教育出版社)]

    [16]

    Nye J, Wright F J 1999 Natural Focusing and Fine Structure of Light:Caustics and Wave Dislocations (Bristol:Institute of Physics Publishing)

    [17]

    Vallée O, Soares M 2004 Airy Functions and Applications to Physics (London:Imperial College Press)

    [18]

    Le Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205(in Chinese)[乐阳阳, 肖寒, 王子潇, 吴敏2013 62 044205]

    [19]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

  • [1] 蒋忠君, 何伟, 陈经纬, 罗丹洋, 杨帆, 蒋凯, 王亮. 菲涅尔衍射光刻.  , 2023, 72(1): 014202. doi: 10.7498/aps.72.20221533
    [2] 潮兴兵, 潘鲁平, 王子圣, 杨锋涛, 丁剑平. 图像传感器像素化效应对菲涅耳非相干关联全息分辨率的影响.  , 2019, 68(6): 064203. doi: 10.7498/aps.68.20181844
    [3] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究.  , 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [4] 杨艳飞, 陈婧, 吴逢铁, 胡润, 张惠忠, 胡汉青. 像散Bessel光束自重建特性的理论和实验研究.  , 2018, 67(22): 224201. doi: 10.7498/aps.67.20181416
    [5] 陈家祯, 郑子华, 叶锋, 连桂仁, 许力. 三维物体多重菲涅耳计算全息水印与无干扰可控重建方法.  , 2017, 66(23): 234202. doi: 10.7498/aps.66.234202
    [6] 许强强, 季旭, 李明, 刘佳星, 李海丽. 菲涅耳聚光下半导体温差发电组件性能研究.  , 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [7] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像.  , 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [8] 任志君, 李晓东, 金洪震. Pearcey光束簇的实验产生和光学结构研究.  , 2015, 64(23): 234205. doi: 10.7498/aps.64.234205
    [9] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化.  , 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [10] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴. 小宽带光谱色散匀滑光束传输特性研究.  , 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [11] 陈小艺, 刘曼, 李海霞, 张美娜, 宋洪胜, 滕树云, 程传福. 弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究.  , 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [12] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像.  , 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [13] 王晓方, 王晶宇. 菲涅耳波带板应用于聚变靶的高分辨X射线成像分析.  , 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [14] 严敏逸, 王旦清, 马忠元, 姚尧, 刘广元, 李伟, 黄信凡, 陈坤基, 徐骏, 徐岭. 二维移相光栅光强分布的计算及在制备有序纳米硅阵列中的应用.  , 2010, 59(5): 3205-3209. doi: 10.7498/aps.59.3205
    [15] 董建军, 曹磊峰, 陈 铭, 谢常青, 杜华冰. 微聚焦菲涅耳波带板聚焦特性研究.  , 2008, 57(5): 3044-3047. doi: 10.7498/aps.57.3044
    [16] 彭 翔, 位恒政, 张 鹏. 基于菲涅耳域的双随机相位编码系统的选择明文攻击.  , 2007, 56(7): 3924-3930. doi: 10.7498/aps.56.3924
    [17] 王淮生. 啁啾超短脉冲光波照射下光栅Talbot效应的研究.  , 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
    [18] 滕树云, 程传福, 刘 曼, 刘立人, 徐至展. 菲涅耳衍射区和夫琅和费衍射区的动态部分相干光散斑场特性.  , 2003, 52(2): 316-323. doi: 10.7498/aps.52.316
    [19] 吴进远, 汪承灏, 何启光. 菲涅耳阵在固体中所产生的声束聚焦和扫描特性.  , 1988, 37(10): 1575-1584. doi: 10.7498/aps.37.1575
    [20] 周国生, 王绍民. 大曲率半径球形光学列阵的菲涅耳成象与赝位相共轭特性.  , 1984, 33(5): 612-620. doi: 10.7498/aps.33.612
计量
  • 文章访问数:  6306
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-07-08
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map