搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强磁与应力场耦合作用下AZ31镁合金塑性变形行为

王宏明 朱弋 李桂荣 郑瑞

引用本文:
Citation:

强磁与应力场耦合作用下AZ31镁合金塑性变形行为

王宏明, 朱弋, 李桂荣, 郑瑞

Plasticity and microstructure of AZ31 magnesium alloy under coupling action of high pulsed magnetic field and external stress

Wang Hong-Ming, Zhu Yi, Li Gui-Rong, Zheng Rui
PDF
导出引用
  • 研究强磁场对AZ31镁合金塑变能力和微观组织的作用, 在3 T脉冲强磁场条件下对合金进行磁场耦合应力时的拉伸实验. 采用电子背散射衍射、X射线衍射和透射电镜分析等方法研究材料的微观组织. 结果表明: 与0 T拉伸试样相比, 3 T拉伸试样抗拉强度和延伸率分别提高了2.2%和28.7%, 说明将强磁场耦合作用于材料塑性变形过程时, 能在不降低材料强度的同时提高镁合金的塑性变形能力, 有助于同步改善材料强韧性. 磁场作用机理主要表现为磁致塑性效应, 计算表明主要合金相 (Mg17Al12)为顺磁性, 有助于发挥磁场作用效果. 磁场提高了位错运动灵活性并促使位错增殖, 晶界处位错堆积和应力集中促进了再结晶形成, 晶粒发生细化, 发挥细晶强韧化效果; 同时磁场诱发塑性变形时的晶粒转动, 新生成非基面取向的晶粒弱化了镁合金(0001)基面织构, 该组织特征有助于提高材料的塑变能力.
    As an h.c.p crystal structure with only a few limited slipping planes, the AZ31 magnesium alloy exhibits a bad plasticity in the presence of external stress. Due to its low density, advanced damping capacity and high ratio strength and rigidity, the magnesium alloy has gradually become the focused and potential structural and functional metallic material in the diverse fields of aerospace, aviation and vehicle transportation, electronic products, etc. Therefore, it is of great importance to improve the process ability of conventional magnetism alloy as AZ31. In the past decades many approaches have been proposed in order to improve the plastic deformation capability. Among these, the diverse physical fields are regarded as the effective methods to improve the comprehensive mechanical properties of metallic materials due to their peculiar heat, force and quantum effects together with the advantageous characteristics of low pollution and high efficiency. In the paper, on the basis of previous researches, a high pulsed magnetic field is introduced into the tensile test to study the influences of magnetic field on the plasticity and microstructure of AZ31 magnesium alloy in order to explore a novel way to enhance the plastic deformation capability of alloy. As for the current experiment, the tensile test of AZ31 magnesium alloy is carried out under the coupling action of high pulsed magnetic field and external stress. The test results are compared with those processed without magnetic field. Several advanced detection methods are utilized to investigate the microstructure including the electron back scattered diffraction, X-ray diffraction and transmission electron microscopy, etc. Besides, the first principle is utilized to calculate the magnetic properties of main precipitates (Mg17Al12).The experimental results show that the tensile strength and elongation of the 3 T sample are increased by 2.2% and 28.7% in comparison to those of the 0 T sample. It highlights that when the high pulsed magnetic field is introduced into the plastic deformation process, the plasticity of the magnesium alloy can be improved without reducing the tensile strength of the material. The action mechanism of magnetic field is analyzed in detail and attributed to the magnetoplasticity effect. The calculation results on the basis of first principle show that the (Mg17Al12) phase is paramagnetic, which is helpful for performing the effect of magnetic field. The magnetic field enhances the flexibility of the dislocation movement and facilitates the proliferation of the dislocation. The dislocation and stress concentrating at the grain boundaries accelerate the formation of recrystallization, which is of great importance to the sub-grain generation and grain refinement that is beneficial to exhibiting the fine grain strengthening and enhancing the strength and toughness of alloy. Meanwhile, during the peculiar tensile process, the magnetic field induces the grain rotation. The newborn fine grains along the non-basal face weaken the (0001) basal texture of magnesium alloy. The characteristic of the texture structure is helpful for improving the plastic deformation capacity of AZ31 alloy. The plastic deformation under high magnetic field is regarded as an advanced way to improve the plasticities of similar nonmagnetic metallic materials such as aluminum, titanium and copper alloys and their composites.
      通信作者: 李桂荣, liguirong@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51371091,51001054,51174099)和江苏省研究生科研创新计划(批准号:SJLX15_0490)资助的课题.
      Corresponding author: Li Gui-Rong, liguirong@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371091, 51001054, 51174099) and the Postgraduate Research and Innovation Project of Jiangsu Province, China (Grant No. SJLX15_0490).
    [1]

    Chen Z H 2005 Wrought Magnesium Alloys (Beijing:Chemical Industry Press) p4 (in Chinese) [陈振华 2005 变形镁合金 (北京:化学工业出版社) 第4页]

    [2]

    Prasad Y V R K, Rao K P 2006 Mat. Sci. Eng. A 432 170

    [3]

    Prez-Prado M T, Valle J A D, Contreras J M 2004 Scr. Mater. 50 661

    [4]

    Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881

    [5]

    Zhong H, Ren Z M, Li C J 2015 Acta Metallurgica Sinica 4 0 (in Chinese) [钟华, 任忠鸣, 李传军 2015 金属学报 4 0]

    [6]

    Zhou M Q, Huang C Q, Xia W J 2006 Foundry 55 890 (in Chinese) [邹敏强, 黄长清, 夏伟军 2006 铸造 55 890]

    [7]

    Bao W P, Xu G X, Zhen J W 2003 Journal of Materials and Metallurgy 2 216 (in Chinese) [包卫平, 许光明, 郑佳伟 2003 材料与冶金学报 2 216]

    [8]

    Zhang B W, Ren Z M, Wang H 2004 Acta Metallurgica Sinica 40 604 (in Chinese) [张邦文, 任忠鸣, 王晖 2004 金属学报 40 604]

    [9]

    Wang H M, Li P S, Zheng R 2015 Acta Phys. Sin. 64 087104 (in Chinese) [王宏明, 李沛思, 郑瑞 2015 64 087104]

    [10]

    Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812

    [11]

    Golovin Y 2004 Phys. Solid State 46 789

    [12]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [13]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [14]

    Wang H M, Zheng R, Li G R 2015 Chinese Journal of Inorganic Chemistry 31 2143 (in Chinese) [王宏明, 郑瑞, 李桂荣 2015 无机化学学报 31 2143]

    [15]

    Xiao X L, Luo C P, Nie J F 2001 Acta Metallurgica Sinica 1 1 (in Chinese) [肖晓玲, 罗承萍, 聂建峰 2001 金属学报 1 1]

    [16]

    Lei X L, Zhu H J, Ge G X 2008 Acta Phys. Sin. 57 5491 (in Chinese) [雷雪玲, 祝恒江, 葛桂贤 2008 57 5491]

    [17]

    Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectroscopy and Spectral Analysis 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]

    [18]

    Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16

    [19]

    Mao W M 2008 Structure and Properties of Metallic Materials (Beijing: Tinghua Press) p94 (in Chinese) [毛卫民 2008 金属材料结构与性能(北京:清华大学出版社) 第94页]

    [20]

    Ni S, Wang Y B, Liao X Z 2012 Acta Mater. 60 3181

    [21]

    Schouwenaars R, Seefeldt M, Houtte P V 2010 Acta Mater. 58 4344

    [22]

    Liu P, Chen Z J 2011 Journal of Hefei University of Technology (Natural Science Edition) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报 (自然科学版) 34 341]

    [23]

    Chui Z Q, Tan Y C 2011 Metallography and Heat Treatment (Beijing: China Machine Press) p197 (in Chinese) [崔忠圻, 覃耀春 2011 金属学与热处理(北京:机械工业出版社) 第197页]

    [24]

    Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Transactions of the China Welding Institution 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]

    [25]

    Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 Journal of Tsinghua University (Natural science edition) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报 42 147]

    [26]

    Guan L 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [官磊 2010 博士学位论文 (北京: 清华大学)]

    [27]

    Chen Y Q, Chen Z H, Xia W J 2005 Transactions of Nonferrous Metals Society of China 15 1369 (in Chinese) [程永奇, 陈振华, 夏伟军 2005 中国有色金属学报 15 1369]

    [28]

    Guo Q, Yan H G, Chen Z H 2007 Acta Metallurgica Sinica 43 619 (in Chinese) [郭强, 严红革, 陈振华 2007 金属学报 43 619]

    [29]

    Mukai T, Yamanoi M, Watanabe H 2001 Scr. Mater. 45 89

    [30]

    Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]

  • [1]

    Chen Z H 2005 Wrought Magnesium Alloys (Beijing:Chemical Industry Press) p4 (in Chinese) [陈振华 2005 变形镁合金 (北京:化学工业出版社) 第4页]

    [2]

    Prasad Y V R K, Rao K P 2006 Mat. Sci. Eng. A 432 170

    [3]

    Prez-Prado M T, Valle J A D, Contreras J M 2004 Scr. Mater. 50 661

    [4]

    Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881

    [5]

    Zhong H, Ren Z M, Li C J 2015 Acta Metallurgica Sinica 4 0 (in Chinese) [钟华, 任忠鸣, 李传军 2015 金属学报 4 0]

    [6]

    Zhou M Q, Huang C Q, Xia W J 2006 Foundry 55 890 (in Chinese) [邹敏强, 黄长清, 夏伟军 2006 铸造 55 890]

    [7]

    Bao W P, Xu G X, Zhen J W 2003 Journal of Materials and Metallurgy 2 216 (in Chinese) [包卫平, 许光明, 郑佳伟 2003 材料与冶金学报 2 216]

    [8]

    Zhang B W, Ren Z M, Wang H 2004 Acta Metallurgica Sinica 40 604 (in Chinese) [张邦文, 任忠鸣, 王晖 2004 金属学报 40 604]

    [9]

    Wang H M, Li P S, Zheng R 2015 Acta Phys. Sin. 64 087104 (in Chinese) [王宏明, 李沛思, 郑瑞 2015 64 087104]

    [10]

    Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812

    [11]

    Golovin Y 2004 Phys. Solid State 46 789

    [12]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [13]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [14]

    Wang H M, Zheng R, Li G R 2015 Chinese Journal of Inorganic Chemistry 31 2143 (in Chinese) [王宏明, 郑瑞, 李桂荣 2015 无机化学学报 31 2143]

    [15]

    Xiao X L, Luo C P, Nie J F 2001 Acta Metallurgica Sinica 1 1 (in Chinese) [肖晓玲, 罗承萍, 聂建峰 2001 金属学报 1 1]

    [16]

    Lei X L, Zhu H J, Ge G X 2008 Acta Phys. Sin. 57 5491 (in Chinese) [雷雪玲, 祝恒江, 葛桂贤 2008 57 5491]

    [17]

    Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectroscopy and Spectral Analysis 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]

    [18]

    Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16

    [19]

    Mao W M 2008 Structure and Properties of Metallic Materials (Beijing: Tinghua Press) p94 (in Chinese) [毛卫民 2008 金属材料结构与性能(北京:清华大学出版社) 第94页]

    [20]

    Ni S, Wang Y B, Liao X Z 2012 Acta Mater. 60 3181

    [21]

    Schouwenaars R, Seefeldt M, Houtte P V 2010 Acta Mater. 58 4344

    [22]

    Liu P, Chen Z J 2011 Journal of Hefei University of Technology (Natural Science Edition) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报 (自然科学版) 34 341]

    [23]

    Chui Z Q, Tan Y C 2011 Metallography and Heat Treatment (Beijing: China Machine Press) p197 (in Chinese) [崔忠圻, 覃耀春 2011 金属学与热处理(北京:机械工业出版社) 第197页]

    [24]

    Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Transactions of the China Welding Institution 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]

    [25]

    Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 Journal of Tsinghua University (Natural science edition) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报 42 147]

    [26]

    Guan L 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [官磊 2010 博士学位论文 (北京: 清华大学)]

    [27]

    Chen Y Q, Chen Z H, Xia W J 2005 Transactions of Nonferrous Metals Society of China 15 1369 (in Chinese) [程永奇, 陈振华, 夏伟军 2005 中国有色金属学报 15 1369]

    [28]

    Guo Q, Yan H G, Chen Z H 2007 Acta Metallurgica Sinica 43 619 (in Chinese) [郭强, 严红革, 陈振华 2007 金属学报 43 619]

    [29]

    Mukai T, Yamanoi M, Watanabe H 2001 Scr. Mater. 45 89

    [30]

    Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析.  , 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] 李国建, 常玲, 刘诗莹, 李萌萌, 崔伟斌, 王强. 强磁场下Sm-Fe薄膜不同晶态组织演化及磁性能调控.  , 2018, 67(9): 097501. doi: 10.7498/aps.67.20180212
    [3] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响.  , 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [4] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响.  , 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [5] 曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成. 强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响.  , 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [6] 李强, 杨合, 薛向欣, 李清伟. 强磁场对金属离子掺杂CaTiO3结构和光学性能的影响.  , 2014, 63(22): 227803. doi: 10.7498/aps.63.227803
    [7] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能.  , 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [8] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响.  , 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [9] 苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成. 强磁场对Mn-Sb包晶合金相变及凝固组织的影响.  , 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [10] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟.  , 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [11] 门福殿, 王炳福, 何晓刚, 隗群梅. 强磁场中弱相互作用费米气体的热力学性质.  , 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [12] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征.  , 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [13] 刘涛, 郭朝晖, 李岫梅, 李卫. 微观组织结构对铂钴永磁合金磁性能的影响.  , 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [14] 王江, 钟云波, 任维丽, 雷作胜, 任忠鸣, 徐匡迪. 强磁场复合交变电流作用下Zn-30wt%Bi偏晶合金的凝固.  , 2009, 58(2): 893-900. doi: 10.7498/aps.58.893
    [15] 张飞鹏, 路清梅, 张久兴, 张忻. 双掺杂BaxAgyCa3-x-yCo4O9氧化物的织构与电输运性能.  , 2009, 58(4): 2697-2701. doi: 10.7498/aps.58.2697
    [16] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [17] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响.  , 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [18] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果.  , 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [19] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响.  , 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [20] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究.  , 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
计量
  • 文章访问数:  6180
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-14
  • 修回日期:  2016-05-05
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map