搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合Majorana束缚态T形双量子点中的Andreev反射

王素新 李玉现 王宁 刘建军

引用本文:
Citation:

耦合Majorana束缚态T形双量子点中的Andreev反射

王素新, 李玉现, 王宁, 刘建军

Andreev reflection in a T-shaped double quantum-dot with coupled Majorana bound states

Wang Su-Xin, Li Yu-Xian, Wang Ning, Liu Jian-Jun
PDF
导出引用
  • 研究了连接在正常金属电极和超导电极之间的耦合Majorana束缚态(MBSs)T形双量子点结构中的Andreev反射. 研究发现, 对于T形双量子点结构, 当入射能量等于边耦合量子点能级时Andreev反射电导出现Fano振荡, 连接MBSs之后, 零费米能附近出现一对新的Fano型振荡峰. 如果忽略两个MBSs之间的相互作用, 零费米能点的Andreev反射电导为定值1/2G0(G0=2e2/h), 不受量子点能级、双量子点之间耦合强度以及量子点与MBSs之间的耦合强度的影响. 此外, 在没有耦合MBSs的T形双量子点结构中, 调节双量子点间的耦合强度可以使零费米能附近的Andreev反射电导出现由共振带向反共振带的转变, 而耦合MBSs之后, 又可以使反共振消失转而出现新的共振峰.
    Owing to their potential applications in topological quantum computation and because of their fundamental interest, Majorana fermions are currently attracting increasing attention. Numerous theoretical and experimental studies exactly show that the quantum dot (QD) structure is a good candidate for the detection of Majorana bound state (MBSs). QD system has many unique transport properties and interesting quantum phenomena, such as quantum interference effect, Fano effect, etc. In addition, compared with a single QD, a coupled QD structure has many adjustable parameters, and thus has more important theoretical and practical value, which provides an excellent platform to detect MBSs. In addition, QD coupled with normal metallic conductor and with superconducting electrode structure exhibits interesting transport properties. One of these properties is the so-called Andreev reflection (AR). Especially, in the subgap regime, the current almost entirely originates from the anomalous Andreev channel; such spectroscopy can thus directly probe any in-gap state. In the present paper, we consider a T-shaped double QD structure with side-coupled to MBSs and investigate the transport properties through the system by adding a normal and a superconducting lead. We calculate the AR conductance through the system in the subgap transport. Here we focus on the effects of MBSs on AR through the system. We find that the AR conductance presents a resonant peak around zero Fermi energy when only one QD (QD1) connects to metal and superconducting leads. As a consequence of quantum interference, when using another QD2 side-attached to QD1, a pair of new Fano-type resonant peaks appear and is distributed aside the zero point and the Fano antiresonant point is at the energy level of the QD2. If an MBS is introduced to couple to QD2, the AR conductance shows several new features. First, a pair of new Fano-type resonance curves appears and the original ones also persist except for the position shifting. In addition, the AR conductance value at the zero Fermi energy point is exactly equal to 1/2G0(G0=2e2/h) in the presence of QD-MBS coupling and zero inter-MBS coupling, which is not dependent on the inert-dot coupling nor the energy levels of QD nor the strength of the QD-MBS coupling. This feature is different from which the T-shaped DQD structure side-coupled to a traditional fermions, showing the robust properties of the Majorana fermions. We also show that in the Andreev reflection conductance curves appear resonance zone changes into antiresonance near zero Fermi energy by adjusting the coupling strength between the double quantum dots in the system without MBSs, while the antiresonance disappears and new resonance peaks appear if an MBS is introduced to couple to QD2. We hope that these results will be helpful for understanding the quantum interference in MBS-assisted AR and may find significant applications, especially in quantum computation.
      通信作者: 刘建军, liujj@hebtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61176089, 10974043)、河北省自然科学基金(批准号: A2011205092, 2014205005)和河北民族师范学院科学技术研究项目(批准号: 201109)资助的课题.
      Corresponding author: Liu Jian-Jun, liujj@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176089, 10974043), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011205092, 2014205005) and the Fund for Hebei Normal University for Nationalities, China (Grant No. 201109).
    [1]

    Majorana E 1937 Nuovo Cimento 14 171

    [2]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412

    [3]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [4]

    Leijnse M, Flensberg K 2011 Phys. Rev. Lett. 107 210502

    [5]

    Zhang D P, Tian G S 2015 Chin. Phys. B 24 080401

    [6]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [7]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [9]

    Flensberg K 2011 Phys. Rev. Lett. 106 090503

    [10]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002

    [11]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001

    [12]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [13]

    Tang H Z, Zhang Y T, Liu J J 2015 AIP Adv. 5 127129

    [14]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308

    [15]

    Liu J, Wang J, Zhang F C 2014 Phys. Rev. B 90 035307

    [16]

    Wang N, L S H, Li Y X 2014 J. Appl. Phys. 115 083706

    [17]

    Li Y X, Bai Z M 2013 J. Appl. Phys. 114 033703

    [18]

    Gong W J, Zhang S F, Li Z C, Yi G Y, Zheng Y S 2014 Phys. Rev. B 89 245413

    [19]

    Dessotti F A, de Souza R M, Souza F M, Seridonio A C 2014 J. Appl. Phys. 116 173701

    [20]

    Zhou Y, Guo J H 2015 Acta Phys. Sin. 64 167302 (in Chinese) [周洋, 郭健宏 2015 64 167302]

    [21]

    Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403

    [22]

    L H F, Lu H Z, Shen S Q 2014 Phys. Rev. B 90 195404

    [23]

    Wang S X, Li Y X, Liu J J 2016 Chin. Phys. B 25 037304

    [24]

    Zocher B, Rosenow B 2013 Phys. Rev. Lett. 111 036802

    [25]

    Leijinse M, Flensberg K 2011 Phys. Rev. B 84 140501

    [26]

    Fano U 1961 Phys. Rev. 124 1866

    [27]

    Sun Q F, Wang J, Lin T H 1999 Phys. Rev. B 59 3831

    [28]

    Sun Q F, Wang J, Lin T H 2001 Phys. Rev. Lett. 87 176601

    [29]

    Barański J, Domański T 2015 Chin. Phys. B 24 017304

    [30]

    Fazio R, Raimondi R 1998 Phys. Rev. Lett. 80 2913

    [31]

    Haug H, Jauho A P 1998 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer-Verlag) p181

    [32]

    Yeyati A L Cuevas J C, Lpez-Dvalos A, Martn-Rodero A 1997 Phys. Rev. B 55 R6137

    [33]

    Cuevas J C, Martn-Rodero A, Yeyati A L 1996 Phys. Rev. B 54 7366

    [34]

    Barański J, Domański T 2015 Chin. Phys. B 24 017304

  • [1]

    Majorana E 1937 Nuovo Cimento 14 171

    [2]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412

    [3]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [4]

    Leijnse M, Flensberg K 2011 Phys. Rev. Lett. 107 210502

    [5]

    Zhang D P, Tian G S 2015 Chin. Phys. B 24 080401

    [6]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [7]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [9]

    Flensberg K 2011 Phys. Rev. Lett. 106 090503

    [10]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002

    [11]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001

    [12]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [13]

    Tang H Z, Zhang Y T, Liu J J 2015 AIP Adv. 5 127129

    [14]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308

    [15]

    Liu J, Wang J, Zhang F C 2014 Phys. Rev. B 90 035307

    [16]

    Wang N, L S H, Li Y X 2014 J. Appl. Phys. 115 083706

    [17]

    Li Y X, Bai Z M 2013 J. Appl. Phys. 114 033703

    [18]

    Gong W J, Zhang S F, Li Z C, Yi G Y, Zheng Y S 2014 Phys. Rev. B 89 245413

    [19]

    Dessotti F A, de Souza R M, Souza F M, Seridonio A C 2014 J. Appl. Phys. 116 173701

    [20]

    Zhou Y, Guo J H 2015 Acta Phys. Sin. 64 167302 (in Chinese) [周洋, 郭健宏 2015 64 167302]

    [21]

    Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403

    [22]

    L H F, Lu H Z, Shen S Q 2014 Phys. Rev. B 90 195404

    [23]

    Wang S X, Li Y X, Liu J J 2016 Chin. Phys. B 25 037304

    [24]

    Zocher B, Rosenow B 2013 Phys. Rev. Lett. 111 036802

    [25]

    Leijinse M, Flensberg K 2011 Phys. Rev. B 84 140501

    [26]

    Fano U 1961 Phys. Rev. 124 1866

    [27]

    Sun Q F, Wang J, Lin T H 1999 Phys. Rev. B 59 3831

    [28]

    Sun Q F, Wang J, Lin T H 2001 Phys. Rev. Lett. 87 176601

    [29]

    Barański J, Domański T 2015 Chin. Phys. B 24 017304

    [30]

    Fazio R, Raimondi R 1998 Phys. Rev. Lett. 80 2913

    [31]

    Haug H, Jauho A P 1998 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer-Verlag) p181

    [32]

    Yeyati A L Cuevas J C, Lpez-Dvalos A, Martn-Rodero A 1997 Phys. Rev. B 55 R6137

    [33]

    Cuevas J C, Martn-Rodero A, Yeyati A L 1996 Phys. Rev. B 54 7366

    [34]

    Barański J, Domański T 2015 Chin. Phys. B 24 017304

  • [1] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器.  , 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [3] 代雪峰, 贡同. 铁磁性电极条件下T形双量子点结构中马约拉纳束缚态的解耦现象.  , 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [4] 陈书刚, 李学思, 韩宇. 第二类Weyl半金属的金属-超导-金属结中的Andreev反射.  , 2022, 71(12): 127201. doi: 10.7498/aps.71.20211962
    [5] 杜芊, 陈溢杭. 硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应.  , 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [6] 陈晨, 刘琴, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模.  , 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [7] 蓝康, 杜倩, 康丽莎, 姜露静, 林振宇, 张延惠. 基于量子点接触的开放双量子点系统电子转移特性.  , 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [8] 梁奇锋, 王志, 川上拓人, 胡晓. 拓扑超导Majorana束缚态的探索.  , 2020, 69(11): 117102. doi: 10.7498/aps.69.20190959
    [9] 周洋, 郭健宏. 双量子点结构中Majorana费米子的噪声特性.  , 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [10] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制.  , 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [11] 陆法林, 陈昌远, 尤源. 双环形Hulthn势束缚态的近似解析解.  , 2013, 62(20): 200301. doi: 10.7498/aps.62.200301
    [12] 谌雄文, 谌宝菊, 施振刚, 宋克慧. 嵌入T型耦合双量子点介观A-B环系统的显著Fano 效应.  , 2009, 58(4): 2720-2725. doi: 10.7498/aps.58.2720
    [13] 刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭. 渐变折射率光量子阱对束缚态能级的调整.  , 2007, 56(4): 2281-2285. doi: 10.7498/aps.56.2281
    [14] 郁华玲. 超导邻近效应在正常金属层中引起的反常小能隙现象.  , 2007, 56(10): 6038-6044. doi: 10.7498/aps.56.6038
    [15] 吴卓杰, 朱卡的, 袁晓忠, 郑 杭. 电声子相互作用对量子点分子中单电子隧穿的影响.  , 2005, 54(7): 3346-3350. doi: 10.7498/aps.54.3346
    [16] 陈 刚, 楼智美. 无反射势阱中相对论粒子的束缚态.  , 2003, 52(5): 1071-1074. doi: 10.7498/aps.52.1071
    [17] 王传奎, 江兆潭. 一类弯曲量子线的量子束缚态.  , 2000, 49(8): 1574-1579. doi: 10.7498/aps.49.1574
    [18] 董正超, 陈贵宾, 邢定钰, 董锦明. 铁磁-绝缘层-d波超导结中的Andreev反射特性.  , 2000, 49(11): 2276-2280. doi: 10.7498/aps.49.2276
    [19] 祁永昌. 电子-狄喇克双子束缚态的宇称性质及其斯塔克效应.  , 1996, 45(3): 373-379. doi: 10.7498/aps.45.373
    [20] 金奎娟, 潘少华, 杨国桢. 量子阱吸收谱中的Fano效应.  , 1995, 44(10): 1615-1621. doi: 10.7498/aps.44.1615
计量
  • 文章访问数:  5774
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-09
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map