-
为了进一步理解极端条件下物质的电离特性, 特别是超短超强激光脉冲辐照超薄靶时等离子体的形成与分布, 本文以超薄碳膜为例, 细致研究了超短超强激光脉冲辐照下原子的离化过程. 分析和比较了强激光场直接作用电离和靶内静电场电离等两种场致电离形式, 在碰撞电离可以忽略的情况下, 发现更多的电离份额是来自靶内静电场的电离方式. 研究了激光脉冲强度对电离的影响, 发现激光脉冲强度越强, 电离速度越快, 产生的高价态离子所占比例也越高.当激光强度为11020 W/cm2时, 尽管该强度高于电离生成C+6所需要的激光强度阈值, 但该激光脉冲并不能将整个靶电离成C+6离子, 对此本文进行了详细的分析. 在研究激光脉冲宽度的影响时, 发现激光脉宽越小, 电离速度越快, 但越小的激光脉冲电离获得的高价态离子越少.Ion acceleration is of interest for applications in fast ignition, compact particle sources, medical science, and others. The formation of plasma is of fundamental importance for understanding ion acceleration driven by intense laser. In order to further understand the solid dense material ionization dynamics under ultra-strong field, we use two-dimensional particle-in-cell code to study the ionization process of ultra-thin carbon film, driven by ultra-short intense laser pulse, particularly to see the plasma generation and distribution during the interaction. When an ultra-intense short pulse laser irradiates a solid dense nm-thick film target, the collisional ionization can be ignored for such a thin film target. If the target thickness is larger than laser pulse skin depth, the formation of plasma is contributed from laser field direct ionization and the ionization of electrostatic field inside the target, both of which are discussed and compared by the simulation results in this work. The ionization directly stimulated by laser field happens only near the laser-target interaction surface. After the generation of plasma on the target surface, electrons are accelerated into the target because of laser ponderomotive force. A huge electrostatic field is formed inside the target as a result of hot electron transport in it, and ionizes the target far from the interaction surface. It is found that a bigger fraction of ionization is contributed from electrostatic field ionization inside the target. The effect of laser pulse intensity on ionization is studied in detail, in which the laser pulse intensity is changed from 11018 W/cm2 to 11020 W/cm2. Comparing the results obtained under different intensities, we can see that higher intensity results in higher ionization speed, and much higher-order ions can be generated. At an intensity of 11020 W/cm2, although the intensity much higher than the threshold can generate C+6, only a small part of ions can be ionized into C+6. The reason is that the C+6 ions can be generated directly only by laser field, and the total number of C+6 ions is determined by laser pulse skin depth and spot size. We also consider the effect of laser pulse duration from 30 fs to 120 fs at an intensity of 11020 W/cm2. It is found that higher ionization speed can be obtained, while much less higher-order ions can be generated under shorter laser pulse duration. This description of the generation of solid density plasma driven by intense laser interacting with nm-thick target helps us to further understand the material characteristic under ultra-strong field. This work also benefits the numerical model of plasma in application, namely laser driven ultra-thin film ion acceleration.
-
Keywords:
- formation of plasma /
- ultra-thin carbon film /
- laser field /
- field ionization
[1] Maiman T H 1960 Nature 187 493
[2] Strickland D, Mourou G 1985 Opt. Commun. 55 447
[3] Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G, Krushelnick K 2008 Opt. Express 16 2109
[4] Sheng Z M, Weng S M, Yu L L, Wang W M, Cui Y Q, Chen M, Zhang J 2015 Chin. Phys. B 24 015201
[5] Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 054601
[6] Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751
[7] Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002
[8] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003
[9] Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002
[10] Mangles S P D, Murphy C D, Najmudin Z, Thomas A D R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535
[11] Yu J Q, Zhou W M, Cao L H, Zhao Z Q, Cao L F, Shan L Q, Liu D X, Jin X L, Li B, Gu Y Q 2012 Appl. Phys. Lett. 100 204101
[12] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Machinnon A, Snavely R A 2001 Phys. Plasma 8 543
[13] Yu J Q, Jin X L, Zhou W M, Zhang B, Zhao Z Q, Cao L F, Li B, Gu Y Q, Zhan R X, Najmudin Z 2013 Laser and Particle Beams 31 597
[14] Yu J Q, Zhou W M, Jin X L, Li B, Zhao Z Q 2012 Acta Phys. Sin. 61 175202 (in Chinese) [余金清, 周维民, 金晓林, 李斌, 赵宗清 2012 61 175202]
[15] Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003
[16] Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J T, Fernandez J C 2007 Phys.Plasmas 14 056706
[17] Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M, McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X Y, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006
[18] Palmer C A J, Schreiber, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Splindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002
[19] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003
[20] Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002
[21] Zhang S, Xie B S, Hong X R, Wu H C, Aimierding A, Zhao X Y, Liu M P 2011 Chin. Phys. B 20 015206
[22] Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 62 165201]
[23] Dollar F, Matsuoka T, Petrov G M, Thomas A G R, Bulanov S S, Chvyhov V, Davis, Kalinchenko G, McGuffey C, Willingale L, Yanovsky V, Maksimchuk A, Krushelnick K 2011 Phys. Rev. Lett. 107 065003
[24] Hegelich B M, Pomerantz I, Yin L, Wu H C, Jung D, Albright B J, Gautier D C, Letzring S, Palaniyappan S, Shah R, Allinger K, Horlein R, Schreiber J, Habs D, Blakeney J, Dyer G, Fuller L, Gaul E, Mccary E, Meadows A R, Wang C, Ditmire T, Fernandez J C 2013 New J. Phys. 15 085015
[25] Brarnzel J, Andreev A A, Platonov K, Klingsporn M, Ehrentraut L, Sandner W, Schnurer M 2015 Phys. Rev. Lett. 114 124801
[26] Liu M W, Li R X, Xia C Q, Liu J S, Xu Z Z 2010 Chin. Phys. B 19 075203
[27] Petrov G M, Davis J, Petrova Tz 2009 Plasma Phys. Control. Fusion 51 095005
[28] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Physics and Controlled Fusion 57 1
[29] Kemp A J, Pfund R E W, Meyer-ter-Vehn Jr 2004 Phys. Plasmas 11 5648
[30] Krainov V P, Smirnov M B 2002 Phys. Reports 370 237
[31] Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100
[32] Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383
-
[1] Maiman T H 1960 Nature 187 493
[2] Strickland D, Mourou G 1985 Opt. Commun. 55 447
[3] Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G, Krushelnick K 2008 Opt. Express 16 2109
[4] Sheng Z M, Weng S M, Yu L L, Wang W M, Cui Y Q, Chen M, Zhang J 2015 Chin. Phys. B 24 015201
[5] Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 054601
[6] Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751
[7] Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002
[8] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003
[9] Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002
[10] Mangles S P D, Murphy C D, Najmudin Z, Thomas A D R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535
[11] Yu J Q, Zhou W M, Cao L H, Zhao Z Q, Cao L F, Shan L Q, Liu D X, Jin X L, Li B, Gu Y Q 2012 Appl. Phys. Lett. 100 204101
[12] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Machinnon A, Snavely R A 2001 Phys. Plasma 8 543
[13] Yu J Q, Jin X L, Zhou W M, Zhang B, Zhao Z Q, Cao L F, Li B, Gu Y Q, Zhan R X, Najmudin Z 2013 Laser and Particle Beams 31 597
[14] Yu J Q, Zhou W M, Jin X L, Li B, Zhao Z Q 2012 Acta Phys. Sin. 61 175202 (in Chinese) [余金清, 周维民, 金晓林, 李斌, 赵宗清 2012 61 175202]
[15] Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003
[16] Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J T, Fernandez J C 2007 Phys.Plasmas 14 056706
[17] Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M, McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X Y, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006
[18] Palmer C A J, Schreiber, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Splindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002
[19] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003
[20] Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002
[21] Zhang S, Xie B S, Hong X R, Wu H C, Aimierding A, Zhao X Y, Liu M P 2011 Chin. Phys. B 20 015206
[22] Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 62 165201]
[23] Dollar F, Matsuoka T, Petrov G M, Thomas A G R, Bulanov S S, Chvyhov V, Davis, Kalinchenko G, McGuffey C, Willingale L, Yanovsky V, Maksimchuk A, Krushelnick K 2011 Phys. Rev. Lett. 107 065003
[24] Hegelich B M, Pomerantz I, Yin L, Wu H C, Jung D, Albright B J, Gautier D C, Letzring S, Palaniyappan S, Shah R, Allinger K, Horlein R, Schreiber J, Habs D, Blakeney J, Dyer G, Fuller L, Gaul E, Mccary E, Meadows A R, Wang C, Ditmire T, Fernandez J C 2013 New J. Phys. 15 085015
[25] Brarnzel J, Andreev A A, Platonov K, Klingsporn M, Ehrentraut L, Sandner W, Schnurer M 2015 Phys. Rev. Lett. 114 124801
[26] Liu M W, Li R X, Xia C Q, Liu J S, Xu Z Z 2010 Chin. Phys. B 19 075203
[27] Petrov G M, Davis J, Petrova Tz 2009 Plasma Phys. Control. Fusion 51 095005
[28] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Physics and Controlled Fusion 57 1
[29] Kemp A J, Pfund R E W, Meyer-ter-Vehn Jr 2004 Phys. Plasmas 11 5648
[30] Krainov V P, Smirnov M B 2002 Phys. Reports 370 237
[31] Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100
[32] Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383
计量
- 文章访问数: 5570
- PDF下载量: 195
- 被引次数: 0