搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三种不同表象下多组态含时Hartree Fock理论实现方案

李文亮 张季 姚洪斌

引用本文:
Citation:

三种不同表象下多组态含时Hartree Fock理论实现方案

李文亮, 张季, 姚洪斌

Multi-configuration time dependent Hartree Fock method in three different representations

Li Wen-Liang, Zhang Ji, Yao Hong-Bin
PDF
导出引用
  • 多组态含时Hartree Fock 理论方法作为一种研究强激光场中多电子原子分子体系动力学行为的一种有效手段, 近几年来备受关注. 本文介绍了该方法的发展历史, 重点介绍了本研究组近几年来对该理论方法的发展, 以及多组态含时Hartree Fock理论方法在原子基函数表象、 格点表象、 二次量子化表象不同的实现方案, 并就典型体系做了大量详细的计算. 同时也详细介绍了该方法在实际应用中存在的挑战, 展望了多组态含时Hartree Fock理论方法的发展应用前景.
    As a powerful tool to deal with multi-electron dynamics in strong laser field, multi-configuration time-dependent Hartree Fock (MCTDHF) method has attracted great attention. In this paper, the strategy of the implement of the MCTDHF theory is illustrated in the paper in detail. We develop three types of Fortran source soft packages based on three different bases to study correlated dynamics of atoms and molecules in strong laser field. The calculated soft-packages based on the theory are introduced in detail. The calculations are performed by using the soft-package. The prospect of the MCTDHF approach to simulating the multi-electron dynamics in strong laser field are also presented.
    • 基金项目: 新疆维吾尔自治区高校科研计划(批准号: XJEDU2012S41) 和国家自然科学基金(批准号: 10974198) 资助的课题.
    • Funds: Project supported by the Scientific Research Program of the Higher Education Institution of Xinjiang, China (Grant No. XJEDU2012S41) and the National Natural Science Foundation of China (Grant No. 10974198).
    [1]

    Feng L Q, Chu T S 2013 Chin. Phys. B 22 023302

    [2]

    Hu J, Wang M S, Han K L, He G Z 2006 Phys. Rev. A 74 063417

    [3]

    Hu J, Meng Q T, Han K L 2007 Chem. Phys. Lett. 442 17

    [4]

    Guo F M, Chen G, Chen J G, Li S Y, Yang Y 2013 Chin. Phys. B 22 023204

    [5]

    Pan H L, Wang G L, Zhou X X 2011 Acta Phys. Sin. 60 043203 (in Chinese) [潘慧玲,王国利, 周效信2011 60 043203]

    [6]

    Cao W J, Cheng C Z, Zhou X X 2011 Acta Phys. Sin. 60 054210 (in Chinese) [曹卫军, 成春芝, 周效信 2011 60 054210]

    [7]

    Li P C, Zhou X X 2012 Commun. Theoret. Phys. 57 445

    [8]

    Fu Y Z, Zhao S F, Zhou X X 2012 Chin. Phys. B 21 113101

    [9]

    Li X J, Zhao S F, Zhou X X 2012 Commun. Theoret. Phys. 58 419

    [10]

    Zheng Y H, Zeng Z N, Li R X 2012 Phys. Rev. A 85 023410

    [11]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng X Y, Lu X M, Wang C, Wang J Z, Nakajima, K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001

    [12]

    Petrissa E, Mathias S, Philip S, Jens B, Andre S, Markus S, Harm G, Reinhard D, Ursula K 2008 Nature Phys. 4 565

    [13]

    Adrian N,Claudio C, Mathias S, Reinhard D, Ursula K 2011 Nature Phys. 7 429

    [14]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Muller H G, Buttiker M, Keller U 2008 Science 322 1525

    [15]

    Li W L, Xu W W 2013 Mol. Phys. 111 119

    [16]

    Li W L, Han K L 2013 J. Math. Chem. DOI 10.1007/s10910-013-0145-8

    [17]

    Li W L, Xu W W, Han, K L 2013 J. Theor. Comput. Chem. 12 1250105

    [18]

    Li W L, Xu, W W, Chu T S 2013 Comput. Theoret. Chem. 1004 18

    [19]

    Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997

    [20]

    Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493

    [21]

    Kulander K C 1987 Phys. Rev. A 36 2726

    [22]

    Pindzola M S, Gavras P, Gorczyca T W 1995 Phys. Rev. A 51 3999

    [23]

    Klamroth T 2003 Phys. Rev. B 68 245421

    [24]

    Zanghellini J, Kitzler M, Fabian C, Brabec T, Scrinzi A 2003 Laser Phys. 13 1064

    [25]

    Zanghellini J, Markus K, Thomas B, Scrnzi A 2004 J. Phys. B: At. Mol. Opt. Phys. 37 763

    [26]

    Caillat J, Zhanghellini J, Kitzler M, Koch O, Kreuzer W, Scrinzi A 2005 Phys. Rev. A 71 012712

    [27]

    Kato T, Kono H 2004 Chem. Phys. Lett. 392 533

    [28]

    Kato T, Yamanouchi K 2009 J. Chem. Phys. 131 164118

    [29]

    Nest M, Klamroth T, Saalfrank P 2005 J. Chem. Phys. 122 124102

    [30]

    Nest M, Klamroth T 2005 Phys. Rev. A 72 012710

    [31]

    Nest M 2007 J. Theor. Comput. Chem. 6 563

    [32]

    Nest M 2006 Phys. Rev. A 73 023613

    [33]

    Nest M, Padmanaban R, Saalfrank P 2007 J. Chem. Phys. 126 214106

    [34]

    Alon O E, Streltsov A I, Cederbaum L S 2007 Phys. Rev. A 76 062501

    [35]

    Alon O E, Streltsov A I, Cederbaum L S 2007 J. Chem. Phys. 127 154103

    [36]

    Alon O E, Streltsov A I, Cederbaum L S 2008 Phys. Rev. A 77 033613

    [37]

    Alon O E, Streltsov A I, Cederbaum L S 2009 Phys. Rev. A 79 022503

    [38]

    Streltsov A I, sakmann K, Alon O E, Cederbaum L S 2011 Phys. Rev. A 83 043604

    [39]

    Hochstuhl D, Bonitz M 2011 J. Chem. Phys. 134 084106

    [40]

    Li W L 2013 J. Math. Chem. DOI: 10.1007/s10910-013-0161-8

    [41]

    Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309

    [42]

    Birkeland T, Nepstad R, Forre M 2010 Phys. Rev. Lett. 104 163002

    [43]

    Meyer H D, Manthe U, Cederbaum L S 1990 Chem. Phys. Lett. 165 73

    [44]

    Meyer H D, Manthe U, Cederbaum L S 1992 J. Chem. Phys. 97 3199

    [45]

    Beck M H, Jackle A, Worth G A, Meyer H D 2000 Phys. Rep. 324 1

    [46]

    Wang H Thoss M 2003 J. Chem. Phys. 119 1289

    [47]

    Wang H, Thoss M 2009 J. Chem. Phys. 131 024114

  • [1]

    Feng L Q, Chu T S 2013 Chin. Phys. B 22 023302

    [2]

    Hu J, Wang M S, Han K L, He G Z 2006 Phys. Rev. A 74 063417

    [3]

    Hu J, Meng Q T, Han K L 2007 Chem. Phys. Lett. 442 17

    [4]

    Guo F M, Chen G, Chen J G, Li S Y, Yang Y 2013 Chin. Phys. B 22 023204

    [5]

    Pan H L, Wang G L, Zhou X X 2011 Acta Phys. Sin. 60 043203 (in Chinese) [潘慧玲,王国利, 周效信2011 60 043203]

    [6]

    Cao W J, Cheng C Z, Zhou X X 2011 Acta Phys. Sin. 60 054210 (in Chinese) [曹卫军, 成春芝, 周效信 2011 60 054210]

    [7]

    Li P C, Zhou X X 2012 Commun. Theoret. Phys. 57 445

    [8]

    Fu Y Z, Zhao S F, Zhou X X 2012 Chin. Phys. B 21 113101

    [9]

    Li X J, Zhao S F, Zhou X X 2012 Commun. Theoret. Phys. 58 419

    [10]

    Zheng Y H, Zeng Z N, Li R X 2012 Phys. Rev. A 85 023410

    [11]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng X Y, Lu X M, Wang C, Wang J Z, Nakajima, K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001

    [12]

    Petrissa E, Mathias S, Philip S, Jens B, Andre S, Markus S, Harm G, Reinhard D, Ursula K 2008 Nature Phys. 4 565

    [13]

    Adrian N,Claudio C, Mathias S, Reinhard D, Ursula K 2011 Nature Phys. 7 429

    [14]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Muller H G, Buttiker M, Keller U 2008 Science 322 1525

    [15]

    Li W L, Xu W W 2013 Mol. Phys. 111 119

    [16]

    Li W L, Han K L 2013 J. Math. Chem. DOI 10.1007/s10910-013-0145-8

    [17]

    Li W L, Xu W W, Han, K L 2013 J. Theor. Comput. Chem. 12 1250105

    [18]

    Li W L, Xu, W W, Chu T S 2013 Comput. Theoret. Chem. 1004 18

    [19]

    Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997

    [20]

    Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493

    [21]

    Kulander K C 1987 Phys. Rev. A 36 2726

    [22]

    Pindzola M S, Gavras P, Gorczyca T W 1995 Phys. Rev. A 51 3999

    [23]

    Klamroth T 2003 Phys. Rev. B 68 245421

    [24]

    Zanghellini J, Kitzler M, Fabian C, Brabec T, Scrinzi A 2003 Laser Phys. 13 1064

    [25]

    Zanghellini J, Markus K, Thomas B, Scrnzi A 2004 J. Phys. B: At. Mol. Opt. Phys. 37 763

    [26]

    Caillat J, Zhanghellini J, Kitzler M, Koch O, Kreuzer W, Scrinzi A 2005 Phys. Rev. A 71 012712

    [27]

    Kato T, Kono H 2004 Chem. Phys. Lett. 392 533

    [28]

    Kato T, Yamanouchi K 2009 J. Chem. Phys. 131 164118

    [29]

    Nest M, Klamroth T, Saalfrank P 2005 J. Chem. Phys. 122 124102

    [30]

    Nest M, Klamroth T 2005 Phys. Rev. A 72 012710

    [31]

    Nest M 2007 J. Theor. Comput. Chem. 6 563

    [32]

    Nest M 2006 Phys. Rev. A 73 023613

    [33]

    Nest M, Padmanaban R, Saalfrank P 2007 J. Chem. Phys. 126 214106

    [34]

    Alon O E, Streltsov A I, Cederbaum L S 2007 Phys. Rev. A 76 062501

    [35]

    Alon O E, Streltsov A I, Cederbaum L S 2007 J. Chem. Phys. 127 154103

    [36]

    Alon O E, Streltsov A I, Cederbaum L S 2008 Phys. Rev. A 77 033613

    [37]

    Alon O E, Streltsov A I, Cederbaum L S 2009 Phys. Rev. A 79 022503

    [38]

    Streltsov A I, sakmann K, Alon O E, Cederbaum L S 2011 Phys. Rev. A 83 043604

    [39]

    Hochstuhl D, Bonitz M 2011 J. Chem. Phys. 134 084106

    [40]

    Li W L 2013 J. Math. Chem. DOI: 10.1007/s10910-013-0161-8

    [41]

    Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309

    [42]

    Birkeland T, Nepstad R, Forre M 2010 Phys. Rev. Lett. 104 163002

    [43]

    Meyer H D, Manthe U, Cederbaum L S 1990 Chem. Phys. Lett. 165 73

    [44]

    Meyer H D, Manthe U, Cederbaum L S 1992 J. Chem. Phys. 97 3199

    [45]

    Beck M H, Jackle A, Worth G A, Meyer H D 2000 Phys. Rep. 324 1

    [46]

    Wang H Thoss M 2003 J. Chem. Phys. 119 1289

    [47]

    Wang H, Thoss M 2009 J. Chem. Phys. 131 024114

  • [1] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [2] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应.  , 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [3] 郭春祥, 焦志宏, 周效信, 李鹏程. 激光强度依赖的阈下谐波产生机制.  , 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [4] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖.  , 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [5] 白春江, 崔万照, 余金清. 超短超强激光脉冲辐照超薄碳膜电离状态研究.  , 2016, 65(11): 113201. doi: 10.7498/aps.65.113201
    [6] 金发成, 王兵兵. 频域图像下的强场非序列电离过程.  , 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [7] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法.  , 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [8] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离.  , 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [9] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构.  , 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [10] 马宁, 王美山, 杨传路, 熊德林, 李小虎, 马晓光. 激光场强度对NO电子态粒子数布居影响的理论研究.  , 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [11] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲.  , 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [12] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [13] 郭中华, 周效信. 基态分子波函数对N2分子在强激光场中产生高次谐波的影响.  , 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [14] 高 城, 沈云峰, 曾交龙. 电子相关对Xe10+离子4d8—4d75p跃迁系跃迁概率的影响.  , 2008, 57(7): 4059-4065. doi: 10.7498/aps.57.4059
    [15] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究.  , 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [16] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究.  , 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [17] 周效信, 李白文. 强激光场中原子的束缚态和连续态对高次谐波的影响.  , 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
    [18] 邵磊, 霍裕昆, 王平晓, 孔青, 袁祥群, 冯量. 场极化方向对强激光加速电子效应的影响.  , 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [19] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响.  , 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
    [20] 魏国柱. Hubbard-Hirsch模型中的电子相关效应.  , 1994, 43(11): 1828-1832. doi: 10.7498/aps.43.1828
计量
  • 文章访问数:  6469
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-16
  • 修回日期:  2013-03-05
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map