搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三层介质超声谐振模式随材料和界面粘接性能变化的演变规律

刘婧 徐卫疆 胡文祥

引用本文:
Citation:

三层介质超声谐振模式随材料和界面粘接性能变化的演变规律

刘婧, 徐卫疆, 胡文祥

Evolution of the ultrasonic resonance modes in a three-layer structure with change of material and interface adhesion properties

Liu Jing, Xu Wei-Jiang, Hu Wen-Xiang
PDF
导出引用
  • 在用超声波谐振对粘接材料的粘接强度进行无损评估时, 不同模式对粘接强度的敏感程度受到众多因素和参数的影响, 对检测结果的可靠性至关重要. 基于多层介质中声传播和界面弱粘接边界条件的理论模型, 将一个上下非对称的金属-粘接剂-金属三层结构的平面波反射系数函数中的谐振模式看作是上下铝金属层各自的Lamb波频散模式通过夹心粘接剂层相互耦合后叠加组成. 改变影响结构粘接强度的因素, 即粘接剂的性能参数(声阻抗、密度、厚度)和界面切向劲度系数kt来分析三层结构谐振模式耦合方式的变化,得出结论: 粘接结构粘接性能的变化基本上不改变与被粘铝层相关的固有部分的Lamb波模式, 而它们的耦合模式则在谐振频率上产生平移并会与固有模式进行交换和替代; 不同参数的变化引起的模式演变有各自的规律, 大多可彼此区分.
    The quantitative non-destructive evaluation (NDE) of interface adhesion has long been a challenge for the safe use of bonding structures. It is difficult to predict the adhesion resistance force between adhesive and adhered material without performing destructive testing. Ultrasonic approach seems to be the only potential way for its NDE based on the reason of mechanical nature of the problem. Different ultrasonic techniques, such as bulk wave echography, reflection resonance, and Lamb guided waves, have been used to evaluate the interface adhesion strength. But no direct relation between the interfacial bonding strength and the ultrasonic measurement has been established. The most used compression wave echography and resonance at normal incidence are less sensitive to the interface condition, except for a disbond. It is essential that the interface should be excited with a shear stress component to increase the measurement sensibility. But it is not easy to excite the interface by using shear waves in experiment, while the use of guided waves will encounter the problems of high attenuation and mode selection as all modes are not sensitive to a certain interface in a bonded structure. A previous study has shown that the V (z) inversion technique can be used to perform a multimode measurement on a layered structure, where both compression and shear stress resonance occur. This method has the advantage in using a simple experimental setup working at the normal incidence with a focus transducer of large angular aperture. The inversed angular-frequency reflectance function R(; f) gives the resonance modes which are equivalent to the Lamb type guided modes, while it is a local determination of the wave mode, thus the difficulty in guided wave measurement above mentioned can be avoided. The first part of the paper contains the development of the theoretical model for wave propagation in a multilayered structure where three-layer sandwich bonded structures can be considered as a particular case. A weak interfacial adhesion is described by two interface compression and shear stiffness parameters, namely km and kt. By integrating the transfer matrix formalism under the non-ideal boundary conditions, the plane wave angular (incident angle) and frequency reflection coefficient function R(; f) for a liquid immersed asymmetric metal-adhesive-metal three-layer and its dispersion curves of guided mode waves with or without charge are calculated. It is confirmed that the evolutions of the reflection zeros (mode resonances) correspond to the dispersion curves of the guided waves of the same structure without charge. Furthermore, the resonance modes observed in R(; f) can be considered as a combination of the respective Lamb modes of the top and bottom single metal layers coupled through the modes conditioned by the middle adhesive layer and the its interface conditions. The second part of the paper shows the behaviors of the resonance modes by changing the parameters related to the bonding strength. The acoustical impedance, the mass density and the thickness of the adhesive layer, which are related to the cohesive property, and the shear interfacial stiffness coefficient kt which conditions the adhesive property, are changed respectively to observe the resonance mode evolutions. The mode evolutions due to each parameter are analyzed and differentiated. It can be concluded that the change in the adhesion strength of the bonding structure does not affect significantly the modes belonging to those inherent to the two adhered aluminum layers, while the coupling modes will be shifted in frequency and exchange with or replace the said inherent modes. It is expected that the obtained results in this study will be of significance for quantitatively characterizing the interfacial properties of an adhesively bonded layered structure by using the V (z) inversion technique.
      通信作者: 胡文祥, wxhu@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11374230)和国家自然科学基金重点项目(批准号: 10834009) 资助的课题.
      Corresponding author: Hu Wen-Xiang, wxhu@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374230) and the Key Program of the National Natural Science Foundation of China (Grant No. 10834009).
    [1]

    Maeva E, Severina I, Bondarenko S, Chapman G, O'Neill B, Severin F, Maev R G 2004 Can. J. Phys. 82 981

    [2]

    Li M X 2009 10000 Selected Problems in Sciences: Physics (Beijing: Science Press) p356 (in Chinese) [李明轩 2009 10000个科学难题 物理学卷 (北京: 科学出版社) 第356页]

    [3]

    Awaja F, Gilbert M, Kelly G, Fox B, Pigram P J 2009 Prog. Polym. Sci. 34 948

    [4]

    Baik J M, Thompson R B 1984 J. Nondestr. Eval. 4 177

    [5]

    Titov S A, Maev R G, Bogachenkov A N 2008 Ultrasonics 48 537

    [6]

    Zhou H M, Liu G W 2012 Measurement 45 1414

    [7]

    Pilarski A, Rose J L 1988 J. Appl. Phys. 63 300

    [8]

    Pilarski A, Rose J L 1988 NDT International 21 241

    [9]

    Vine K, Cawley P, Kinloch A J 2002 NDT & E Int. 35 241

    [10]

    Drinkwater B, Cawley P 1997 Ultrasonics 35 479

    [11]

    Baltazar A, Wang L, Xie B, Rokhlin S I 2003 J. Acoust. Soc. Am. 114 1424

    [12]

    Leiderman R, Braga A M B, Barbone P E 2005 J. Acoust. Soc. Am. 118 2154

    [13]

    Belloncle V V, Rousseau M, Terrien N 2007 NDT & E Int. 40 419

    [14]

    Akker S, Arman J 1997 Ultrasonics 35 287

    [15]

    Pilarski A, Rose J L 1992 J. Nondestr. Eval. 11 237

    [16]

    Singher L, Segal Y, Segal E, Shamir J 1994 J. Acoust. Soc. Am. 96 2497

    [17]

    Xu P C, Datta S K 1990 J. Appl. Phys. 67 6779

    [18]

    Karpur P, Kundu T, Ditri J J 1999 Review of Progress in Quantitative Nondestructive Evaluation (Vol. 18A-18B) (NewYork: Springer US) 18 pp1533-1542

    [19]

    Castaings M 2014 Ultrasonics 54 1760

    [20]

    Ren B, Lissenden C J 2013 Int. J. Adhes. Adhes. 45 59

    [21]

    Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys. Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮, 刘畅 2015 64 224301]

    [22]

    Zhang R, Wan M X, Cao W W 2000 Acta Phys. Sin. 49 1297 (in Chinese) [张锐, 万明习, Cao Wen-Wu 2000 49 1297]

    [23]

    Vinh P C, Giang P T H 2011 Wave Motion 48 647

    [24]

    Bar-Cohen Y, Mal A K, Lih S S 1993 Materials Evaluation 51 1285

    [25]

    Rokhlin S I, Wang W 1989 J. Acoust. Soc. Am. 86 1876

    [26]

    Liang K K, Kino G S, Khuri-Yakub B T 1985 IEEE Trans. Sonics. Ultrason. 32 213

    [27]

    X W J, Ourak M 1997 NDT & E Int. 30 75

    [28]

    X W J, Ourak M, Lematre M, Bourse G 2000 AIP Conference Proceedings Montreal, Canada, July 25-30, 1999 p1183

    [29]

    Bourse G, X W J, Mouftiez A, Vandevoorde L, Ourak M 2012 NDT {& E Int. 45 22

    [30]

    Liu J, Xu W J, Hu W X, Ourak M, Dubois A 2015 Chin. Phys. Lett. 32 124303

    [31]

    Thomson W T 1950 J. Appl. Phys. 21 89

    [32]

    Lowe M J S 1995 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 525

    [33]

    Rokhlin S I, Wang Y J 1991 J. Acoust. Soc. Am. 89 503

    [34]

    Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822

    [35]

    Chimenti D E, Rokhlin S I 1990 J. Acoust. Soc. Am. 88 1603

    [36]

    Crom B L, Castaings M 2010 J. Acoust. Soc. Am. 127 2220

  • [1]

    Maeva E, Severina I, Bondarenko S, Chapman G, O'Neill B, Severin F, Maev R G 2004 Can. J. Phys. 82 981

    [2]

    Li M X 2009 10000 Selected Problems in Sciences: Physics (Beijing: Science Press) p356 (in Chinese) [李明轩 2009 10000个科学难题 物理学卷 (北京: 科学出版社) 第356页]

    [3]

    Awaja F, Gilbert M, Kelly G, Fox B, Pigram P J 2009 Prog. Polym. Sci. 34 948

    [4]

    Baik J M, Thompson R B 1984 J. Nondestr. Eval. 4 177

    [5]

    Titov S A, Maev R G, Bogachenkov A N 2008 Ultrasonics 48 537

    [6]

    Zhou H M, Liu G W 2012 Measurement 45 1414

    [7]

    Pilarski A, Rose J L 1988 J. Appl. Phys. 63 300

    [8]

    Pilarski A, Rose J L 1988 NDT International 21 241

    [9]

    Vine K, Cawley P, Kinloch A J 2002 NDT & E Int. 35 241

    [10]

    Drinkwater B, Cawley P 1997 Ultrasonics 35 479

    [11]

    Baltazar A, Wang L, Xie B, Rokhlin S I 2003 J. Acoust. Soc. Am. 114 1424

    [12]

    Leiderman R, Braga A M B, Barbone P E 2005 J. Acoust. Soc. Am. 118 2154

    [13]

    Belloncle V V, Rousseau M, Terrien N 2007 NDT & E Int. 40 419

    [14]

    Akker S, Arman J 1997 Ultrasonics 35 287

    [15]

    Pilarski A, Rose J L 1992 J. Nondestr. Eval. 11 237

    [16]

    Singher L, Segal Y, Segal E, Shamir J 1994 J. Acoust. Soc. Am. 96 2497

    [17]

    Xu P C, Datta S K 1990 J. Appl. Phys. 67 6779

    [18]

    Karpur P, Kundu T, Ditri J J 1999 Review of Progress in Quantitative Nondestructive Evaluation (Vol. 18A-18B) (NewYork: Springer US) 18 pp1533-1542

    [19]

    Castaings M 2014 Ultrasonics 54 1760

    [20]

    Ren B, Lissenden C J 2013 Int. J. Adhes. Adhes. 45 59

    [21]

    Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys. Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮, 刘畅 2015 64 224301]

    [22]

    Zhang R, Wan M X, Cao W W 2000 Acta Phys. Sin. 49 1297 (in Chinese) [张锐, 万明习, Cao Wen-Wu 2000 49 1297]

    [23]

    Vinh P C, Giang P T H 2011 Wave Motion 48 647

    [24]

    Bar-Cohen Y, Mal A K, Lih S S 1993 Materials Evaluation 51 1285

    [25]

    Rokhlin S I, Wang W 1989 J. Acoust. Soc. Am. 86 1876

    [26]

    Liang K K, Kino G S, Khuri-Yakub B T 1985 IEEE Trans. Sonics. Ultrason. 32 213

    [27]

    X W J, Ourak M 1997 NDT & E Int. 30 75

    [28]

    X W J, Ourak M, Lematre M, Bourse G 2000 AIP Conference Proceedings Montreal, Canada, July 25-30, 1999 p1183

    [29]

    Bourse G, X W J, Mouftiez A, Vandevoorde L, Ourak M 2012 NDT {& E Int. 45 22

    [30]

    Liu J, Xu W J, Hu W X, Ourak M, Dubois A 2015 Chin. Phys. Lett. 32 124303

    [31]

    Thomson W T 1950 J. Appl. Phys. 21 89

    [32]

    Lowe M J S 1995 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 525

    [33]

    Rokhlin S I, Wang Y J 1991 J. Acoust. Soc. Am. 89 503

    [34]

    Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822

    [35]

    Chimenti D E, Rokhlin S I 1990 J. Acoust. Soc. Am. 88 1603

    [36]

    Crom B L, Castaings M 2010 J. Acoust. Soc. Am. 127 2220

  • [1] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演.  , 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [2] 张辉, 朱文发, 范国鹏, 张海燕. 非连续阻抗粘接结构脱粘缺陷的稀布阵列超声成像.  , 2023, 72(2): 024302. doi: 10.7498/aps.72.20221771
    [3] 孙冠文, 崔寒茵, 李超, 林伟军. 火星大气频散声速剖面建模方法及其对声传播路径的影响.  , 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [4] 王汝佳, 吴士平, 陈伟. 热粘弹波在变温非均匀合金熔体中的传播.  , 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [5] 颜志猛, 王静, 郭健宏. Majorana零模式的电导与低压振荡散粒噪声.  , 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [6] 倪龙, 陈晓. 基于频散补偿和分数阶微分的多模式兰姆波分离.  , 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [7] 苑博, 税国双, 汪越胜. 循环温度疲劳作用下粘接界面损伤的非线性超声评价.  , 2018, 67(7): 074302. doi: 10.7498/aps.67.20172265
    [8] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究.  , 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [9] 周聪, 王庆良. 考虑频散效应的一维非线性地震波数值模拟.  , 2015, 64(23): 239101. doi: 10.7498/aps.64.239101
    [10] 刘启能, 刘沁. 固-固无限周期声子晶体中SH波全反射隧穿的谐振理论.  , 2013, 62(4): 044301. doi: 10.7498/aps.62.044301
    [11] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究.  , 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [12] 方建士, 章定国. 旋转内接悬臂梁的刚柔耦合动力学特性分析.  , 2013, 62(4): 044501. doi: 10.7498/aps.62.044501
    [13] 黄朝强, 陈 波, 李新喜, V. G. Syromyatnikov, N. K. Pleshanov. CoFe/TiZr多层膜材料界面结构与性能的极化中子反射研究.  , 2008, 57(1): 364-370. doi: 10.7498/aps.57.364
    [14] 李富才, 孟 光. 窄频带Lamb波频散特性研究.  , 2008, 57(7): 4265-4272. doi: 10.7498/aps.57.4265
    [15] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性.  , 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [16] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式.  , 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [17] 朱鸿茂, 郑伟花, 黄忠文, 朱 成. 运动界面上反射超声散斑空间运动的研究.  , 2004, 53(8): 2614-2620. doi: 10.7498/aps.53.2614
    [18] 彭景翠. 吡嗪桥接混合价二聚体中的光吸收.  , 1991, 40(6): 862-869. doi: 10.7498/aps.40.862
    [19] 彭景翠. 含铂卤素桥接混合价化合物的掺杂与电导.  , 1991, 40(1): 109-116. doi: 10.7498/aps.40.109
    [20] 赵玉芝, 冷忠昂. 反铁磁体中电磁振荡的频散和衰减.  , 1962, 18(3): 167-174. doi: 10.7498/aps.18.167
计量
  • 文章访问数:  6067
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2015-12-07
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map