搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CH基团与金刚石(111)面的碰撞反应及其对碳膜生长的影响

宋青 权伟龙 冯田均 俄燕

引用本文:
Citation:

CH基团与金刚石(111)面的碰撞反应及其对碳膜生长的影响

宋青, 权伟龙, 冯田均, 俄燕

Collision reactions of CH radical on diamond and their effects on the carbon film growth

Song Qing, Quan Wei-Long, Feng Tian-Jun, E Yan
PDF
导出引用
  • 等离子体增强化学气相沉积技术中的碳膜选择性自组装机理是高性能碳膜制备过程中的挑战性基础课题. 采用经典分子动力学方法, 模拟了不同能量(1.62565 eV)的CH基团在清洁金刚石和吸氢金刚石(111)面上的轰击行为, 获得了吸附、反弹、反应等各类事件的发生概率, 并据此探讨了含氢碳膜制备过程中CH基团的贡献. 结果表明, 随着入射能量的增加, CH基团对薄膜生长的贡献由单纯的吸附、反弹机理向反应、吸附混合机理转变, 其中最主要的反应过程是释放一个或两个氢原子的反应, 而释放氢分子的反应则很少发生. 这些反应不仅使薄膜生长过程更均匀、薄膜表面更平整, 还降低了薄膜的氢含量. 生长机理的转变导致低能量条件下所成薄膜中的多数碳原子都包含一个氢原子作为配位原子, 而高能量条件下的薄膜中的碳原子则很少有氢原子作为配位原子. 另外, 通过分析sp3-C和sp2-C数目的变化, 研究了CH基团对金刚石基底的破坏作用.
    The growth mechanism of hydrogenated carbon films in plasma-enhanced chemical vapor deposition (PECVD) is complicated and much attention has to be paid to it for the unique properties of carbon films. In this paper molecular dynamics simulations are carried out to illustrate the collision behaviors of CH radical on the clear and hydrogenated diamond (111) surface with varying incident energy (from 1.625 to 65 eV), aiming at the growth mechanism of hydrogenated carbon film by PECVD. Our simulations show that the behaviors of incident CH radical can be divided into adsorbing, rebounding, reaction releasing one H atom and reaction releasing two H atoms, while the reaction releasing one H2molecule rarely occurs. At low incident energy, selective adsorption of CH at unsaturated surface C site is the dominated growth mechanism since no reactions can conduct. Such growth model results in films with rough surface, high hydrogen fraction, and loose structure. As the incident energy increases, two chemical reactions that one releases one H atom and the other releases two H atoms are important. Caused by these reactions, the saturated C site in the surface will be transferred into unsaturated one, so that it can further adsorb subsequently incident CH radicals. The occurrence of these reactions makes films grow more uniformly, leading to the smoothness and dense structure of the films. The hydrogen fraction in the films will be reduced by these reactions. To confirm the above growth mechanism, the carbon film growth from CH radicals are then simulated. The film obtained with low energy (3.25 eV) CH radicals is found to be loose, rough, and have many carbon chains with adsorbed hydrogen atoms on the surfaces, while the film produced with high energy (39 eV) radicals are dense, smooth and the chains on the surfaces are short and have less hydrogens. On the other hand, most of the C atoms in the films deposited with low energy have one H atom as coordination, while for high energy most of C atoms in the films have no H atom as coordination. These observations agree well with the proposed growth mechanism. The destruction effects caused by the incident CH radicals are also analyzed based on the variation of the sp2-C and sp3-C in the films.
      通信作者: 宋青, songqing_lz@126.com
    • 基金项目: 甘肃省自然科学基金(批准号: 1310RTZA042)、甘肃省高校科研项目(批准号: 212105)和国家自然科学基金(批准号: 51265027)资助的课题.
      Corresponding author: Song Qing, songqing_lz@126.com
    • Funds: Project supported by the Gansu Natural Science Foundation, China (Grant No. 1310RTZA042), the Gansu University Scientific Study Project, China (Grant No. 212105) and the National Natural Science Foundation of China (Grant No. 51365027).
    [1]

    Erdemir A 2004 Tribo. Inter. 37 577

    [2]

    Bewilogua K, Hofmann D 2014 Surf. Coat. Tech. 242 214

    [3]

    Lin Z Z 2015 Chin. Phys. B 24 068201

    [4]

    Aijaz A, Sarakinos K, Raza M, Jensen J, Helmersson U 2014 Diamond Relat. Mater. 44 117

    [5]

    Polaki S R, Kumar N, Ganesan K, Madapu K, Bahuguna A, Kamruddin M, Dash S, Tyagi A K 2015 Wear 338-339 105

    [6]

    Wang Y J, Li H X, Ji L, Zhao F, Kong Q H, Wang Y X, Liu X H, Quan W L, Zhou H D, Chen J M 2011 Surf. Coat. Tech. 205 3058

    [7]

    Liu D G, Tu J P, Gu C D, Hong C F, Chen R, Yang W S 2010 Surf. Coat. Tech. 205 2474

    [8]

    Wang Y F, Guo J M, Zhao J, Ding D L, He Y Y, Zhang J Y 2015 Mater. Lett. 143 188

    [9]

    Krishnamurthy S, Butenko Y V, Dhanak V R, Hunt M R C, iller L 2013 Carbon 52 145

    [10]

    Dai Y, Dai D D, Yan C X, Huang B B, Han S H 2005 Phys. Rev. B 71 075421

    [11]

    Dai Y, Yan C X, Li A Y, Zhang Y, Han S H 2005 Carbon 43 1009

    [12]

    Ma Y D, Dai Y, Guo M, Huang B B 2012 Phys. Rev. B 85 235448

    [13]

    Ma T B, Hu Y Z, Wang H 2007 Acta Phys. Sin. 56 1129 (in Chinese) [马天宝, 胡元中, 王慧 2007 56 1129]

    [14]

    Quan W L, Li H X, Zhao F, Ji L, Du W, Zhou H D, Chen J M 2010 Phys. Lett. A 374 2150

    [15]

    Quan W L, Li H X, Ji L, Zhao F, Du W, Zhou H D, Chen J M 2010 Acta Phys. Sin. 59 514 (in Chinese) [权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏 2010 59 514]

    [16]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 3965

    [17]

    Quan W L, Sun X W, Song Q, Fu Z J, Guo P, Tian J H, Chen J M 2012 Appl. Surf. Sci. 263 339

    [18]

    Song Q, Ji L, Quan W L, Zhang L, Tian M, Li H X, Chen J M 2012 Acta Phys. Sin. 61 030701 (in Chinese) [宋青, 吉利, 权伟龙, 张磊, 田苗, 李红轩, 陈建敏 2012 61 030701]

    [19]

    Zhou A, Xiu X Q, Zhang R, Xie Z L, Hua X M, Liu B, Han P, Gu S L, Shi Y, Zheng Y D 2013 Chin. Phys. B 22 017801

    [20]

    Li C H, Han X J, Luan Y W, Li J G 2015 Chin. Phys. B 24 116101

    [21]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Mat. 14 783

    [22]

    Berendsen H J C, Postma J P M, Vangunsteren W F, Dinola A, Haark J R 1984 J. Chem. Phys. 81 3684

    [23]

    Hu Y H, Sinnott S B 2004 J. Comput. Phys. 200 251

    [24]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulations (2nd Ed.) (New York: Cambridge University Press) p308

  • [1]

    Erdemir A 2004 Tribo. Inter. 37 577

    [2]

    Bewilogua K, Hofmann D 2014 Surf. Coat. Tech. 242 214

    [3]

    Lin Z Z 2015 Chin. Phys. B 24 068201

    [4]

    Aijaz A, Sarakinos K, Raza M, Jensen J, Helmersson U 2014 Diamond Relat. Mater. 44 117

    [5]

    Polaki S R, Kumar N, Ganesan K, Madapu K, Bahuguna A, Kamruddin M, Dash S, Tyagi A K 2015 Wear 338-339 105

    [6]

    Wang Y J, Li H X, Ji L, Zhao F, Kong Q H, Wang Y X, Liu X H, Quan W L, Zhou H D, Chen J M 2011 Surf. Coat. Tech. 205 3058

    [7]

    Liu D G, Tu J P, Gu C D, Hong C F, Chen R, Yang W S 2010 Surf. Coat. Tech. 205 2474

    [8]

    Wang Y F, Guo J M, Zhao J, Ding D L, He Y Y, Zhang J Y 2015 Mater. Lett. 143 188

    [9]

    Krishnamurthy S, Butenko Y V, Dhanak V R, Hunt M R C, iller L 2013 Carbon 52 145

    [10]

    Dai Y, Dai D D, Yan C X, Huang B B, Han S H 2005 Phys. Rev. B 71 075421

    [11]

    Dai Y, Yan C X, Li A Y, Zhang Y, Han S H 2005 Carbon 43 1009

    [12]

    Ma Y D, Dai Y, Guo M, Huang B B 2012 Phys. Rev. B 85 235448

    [13]

    Ma T B, Hu Y Z, Wang H 2007 Acta Phys. Sin. 56 1129 (in Chinese) [马天宝, 胡元中, 王慧 2007 56 1129]

    [14]

    Quan W L, Li H X, Zhao F, Ji L, Du W, Zhou H D, Chen J M 2010 Phys. Lett. A 374 2150

    [15]

    Quan W L, Li H X, Ji L, Zhao F, Du W, Zhou H D, Chen J M 2010 Acta Phys. Sin. 59 514 (in Chinese) [权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏 2010 59 514]

    [16]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 3965

    [17]

    Quan W L, Sun X W, Song Q, Fu Z J, Guo P, Tian J H, Chen J M 2012 Appl. Surf. Sci. 263 339

    [18]

    Song Q, Ji L, Quan W L, Zhang L, Tian M, Li H X, Chen J M 2012 Acta Phys. Sin. 61 030701 (in Chinese) [宋青, 吉利, 权伟龙, 张磊, 田苗, 李红轩, 陈建敏 2012 61 030701]

    [19]

    Zhou A, Xiu X Q, Zhang R, Xie Z L, Hua X M, Liu B, Han P, Gu S L, Shi Y, Zheng Y D 2013 Chin. Phys. B 22 017801

    [20]

    Li C H, Han X J, Luan Y W, Li J G 2015 Chin. Phys. B 24 116101

    [21]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Mat. 14 783

    [22]

    Berendsen H J C, Postma J P M, Vangunsteren W F, Dinola A, Haark J R 1984 J. Chem. Phys. 81 3684

    [23]

    Hu Y H, Sinnott S B 2004 J. Comput. Phys. 200 251

    [24]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulations (2nd Ed.) (New York: Cambridge University Press) p308

  • [1] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究.  , 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [3] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理.  , 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [4] 张传国, 杨勇, 郝汀, 张铭. 金刚石表面无定形碳氢薄膜生长的分子动力学模拟.  , 2015, 64(1): 018102. doi: 10.7498/aps.64.018102
    [5] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究.  , 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [6] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟.  , 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [7] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [8] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构.  , 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [9] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟.  , 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [10] 开花, 李运超, 郭德成, 李双, 李之杰. 斜入射离子束辅助沉积对类金刚石薄膜结构影响的分子动力学模拟.  , 2009, 58(7): 4888-4894. doi: 10.7498/aps.58.4888
    [11] 梁中翥, 梁静秋, 郑娜, 姜志刚, 王维彪, 方伟. 吸收辐射复合金刚石膜的制备及光学研究.  , 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [12] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究.  , 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [13] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [14] 李荣斌. 硼/氮原子共注入金刚石的原子级研究.  , 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [15] 马天宝, 胡元中, 王 慧. 超薄类金刚石膜生长和结构特性的分子动力学模拟.  , 2006, 55(6): 2922-2927. doi: 10.7498/aps.55.2922
    [16] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟.  , 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [17] 李 欣, 胡元中, 王 慧. 磁盘润滑膜全氟聚醚的分子动力学模拟研究.  , 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
    [18] 李荣斌, 戴永兵, 胡晓君, 沈荷生, 何贤昶. 能量粒子轰击金刚石的计算机模拟.  , 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
    [19] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟.  , 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究.  , 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  6376
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-26
  • 修回日期:  2015-10-28
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map