-
次级电子倍增效应引起的输出窗失效问题往往给微波器件造成灾难性的影响, 是限制微波器件功率进一步提升的瓶颈. 以S波段高功率盒形窗为研究对象, 针对盒形窗内无氧铜金属边界与陶瓷介质窗片相对的区域, 建立了研究法向电场作用下次级电子倍增效应的Monte-Carlo模型. 通过拟合这两种材料间双面次级电子倍增以及单面次级电子倍增效应的敏感曲线, 对次级电子倍增发展特点进行详细分析, 获得了金属与介质之间的次级电子由双面倍增向单面倍增演变的规律.
-
关键词:
- 盒形窗 /
- 双面次级电子倍增效应 /
- 单面次级电子倍增效应
Multipactor discharge always causes disastrous damage to a vacuum window in high power microwave system, which actually becomes a limiting factor for the output power of vacuum device. To explore the multipactor phenomenon of complicated pill-box window, the mulitpactor in normal field between the metal boundary and the window disk is studied. Through Monte Carlo (MC) simulations, the susceptive curve is fitted and analyzed. The secondary electrons' avalanche behavior under the normal RF field is discussed. It is noticed that the one-sided multipactor is excited within a very limited Vrf-fD region when two-sided multipactor is excited initially. The development condition from two-sided multipactor to the one-sided multipactor is proposed. Through analyzing and MC simulation, the condition is achieved. When the normal RF electric field can satisfy the phase focus conditions of one-sided multipactor, the two-sided multipactor will develop into one-sided multpactor and then reach a saturation value. Meanwhile, the initial effect of electrostatic field on one-sided multipactor is also discussed. On condition that two-sided multipactor can be excited, the number of secondary electrons can increase up to a saturation value when Edc0 is lower than the minimal saturate value of Edc. When Edc0 is lager than the minimal saturate value of Edc and in the Edc/Erf threshold of one-sided resonant multipactor, the number of secondary electrons can also increase to a saturate value. However, When Edc0 is lager than the minimal saturate value of Edc but beyond the Edc/Erf threshold of one-sided resonant multipactor, secondary electrons will be suppressed.-
Keywords:
- pill-box window /
- two-sided multipactor /
- one-sided multipactor
[1] Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqz J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023
[2] Vaughan J R M 1961 IEEE Trans. ED 8 302
[3] Saito Y, Matuda N, Anami S, Kinbara A, Horikoshi G, Tanaka J 1989 IEEE Tran. Electr. Insul. 24 1029
[4] Saito Y 1995 IEEE Trans. Dielectr. Electr. Insul. 2 243
[5] Michizono S, Saito Y, Yamaguchi S, Anami S, Matuda N, Kinbara A 1993 IEEE Trans. Electr. Insul. 28 692
[6] Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566
[7] Michizono S 2007 IEEE Trans. Dielectr. Electr. Insul. 14 583
[8] Michizono S, Saito Y 2011 Vacuum 60 235
[9] Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296
[10] Neuber A, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1999 J. Appl. Phys. 86 1724
[11] Farnworth P T 1934 J. Franklin Inst. 218 411
[12] Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon Press)
[13] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[14] Miller H C 1989 IEEE Trans. Electr. Insul. 24 765
[15] Rasch J 2012 Ph. D. Dissertation (Sweden: Chalmers University of Technology)
[16] Kishek R, Lau Y 1995 Phys. Rev. Lett. 75 1218
[17] Gorshkova M A, Nechaev V E 1999 Radiophys. Quantum Electron. 42 967
[18] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[19] Torregrosa G, Coves A, Vicente C P, Perez A M, Gimeno B, Boria V E 2006 IEEE Electron Dev. Lett. 27 619
[20] Coves A, Torregrosa P G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. ED 55 2505
[21] Hays R, Preist D H 1964 Research on Microwave Window Multipactor and its Inhibition U. S. A. Army Electronics Laboratories
[22] Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278
[23] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[24] Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496
[25] Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 63 167901]
[26] Lay K A, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290
[27] Vaughan J R M 1993 IEEE Trans. ED 40 830
[28] Barker J R, Schamiloglu E (translated by translating group of ''High-Power Microwave ource, Technologies'') 2005 High-Power Microwave ource and Technologies (Beijing: Qinghua University Press) (in Chinese) [Barker J R, Schamiloglu E编 (《高功率微波源与技术》翻译组译) 2005 高功率微波源与技术 (北京: 清华大学出版社)]
[29] Semenov V, Nechaev V, Rakova E, Zharova N, Anderson D, Lisak M, Puech J 2005 Phys. Plasmas 12 073508
[30] Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102
[31] Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M, Puech J, Lapierre L, Sombrin J 2002 Phys. Plasmas 9 4736
-
[1] Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqz J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023
[2] Vaughan J R M 1961 IEEE Trans. ED 8 302
[3] Saito Y, Matuda N, Anami S, Kinbara A, Horikoshi G, Tanaka J 1989 IEEE Tran. Electr. Insul. 24 1029
[4] Saito Y 1995 IEEE Trans. Dielectr. Electr. Insul. 2 243
[5] Michizono S, Saito Y, Yamaguchi S, Anami S, Matuda N, Kinbara A 1993 IEEE Trans. Electr. Insul. 28 692
[6] Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566
[7] Michizono S 2007 IEEE Trans. Dielectr. Electr. Insul. 14 583
[8] Michizono S, Saito Y 2011 Vacuum 60 235
[9] Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296
[10] Neuber A, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1999 J. Appl. Phys. 86 1724
[11] Farnworth P T 1934 J. Franklin Inst. 218 411
[12] Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon Press)
[13] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[14] Miller H C 1989 IEEE Trans. Electr. Insul. 24 765
[15] Rasch J 2012 Ph. D. Dissertation (Sweden: Chalmers University of Technology)
[16] Kishek R, Lau Y 1995 Phys. Rev. Lett. 75 1218
[17] Gorshkova M A, Nechaev V E 1999 Radiophys. Quantum Electron. 42 967
[18] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[19] Torregrosa G, Coves A, Vicente C P, Perez A M, Gimeno B, Boria V E 2006 IEEE Electron Dev. Lett. 27 619
[20] Coves A, Torregrosa P G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. ED 55 2505
[21] Hays R, Preist D H 1964 Research on Microwave Window Multipactor and its Inhibition U. S. A. Army Electronics Laboratories
[22] Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278
[23] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[24] Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496
[25] Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 63 167901]
[26] Lay K A, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290
[27] Vaughan J R M 1993 IEEE Trans. ED 40 830
[28] Barker J R, Schamiloglu E (translated by translating group of ''High-Power Microwave ource, Technologies'') 2005 High-Power Microwave ource and Technologies (Beijing: Qinghua University Press) (in Chinese) [Barker J R, Schamiloglu E编 (《高功率微波源与技术》翻译组译) 2005 高功率微波源与技术 (北京: 清华大学出版社)]
[29] Semenov V, Nechaev V, Rakova E, Zharova N, Anderson D, Lisak M, Puech J 2005 Phys. Plasmas 12 073508
[30] Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102
[31] Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M, Puech J, Lapierre L, Sombrin J 2002 Phys. Plasmas 9 4736
计量
- 文章访问数: 5535
- PDF下载量: 124
- 被引次数: 0