搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双面次级电子倍增效应向单面次级电子倍增效应发展规律的研究

张雪 王勇 徐强

引用本文:
Citation:

双面次级电子倍增效应向单面次级电子倍增效应发展规律的研究

张雪, 王勇, 徐强

Research on the development mechanism: from two-sided multipactor to one-sided multipactor

Zhang Xue, Wang Yong, Xu Qiang
PDF
导出引用
  • 次级电子倍增效应引起的输出窗失效问题往往给微波器件造成灾难性的影响, 是限制微波器件功率进一步提升的瓶颈. 以S波段高功率盒形窗为研究对象, 针对盒形窗内无氧铜金属边界与陶瓷介质窗片相对的区域, 建立了研究法向电场作用下次级电子倍增效应的Monte-Carlo模型. 通过拟合这两种材料间双面次级电子倍增以及单面次级电子倍增效应的敏感曲线, 对次级电子倍增发展特点进行详细分析, 获得了金属与介质之间的次级电子由双面倍增向单面倍增演变的规律.
    Multipactor discharge always causes disastrous damage to a vacuum window in high power microwave system, which actually becomes a limiting factor for the output power of vacuum device. To explore the multipactor phenomenon of complicated pill-box window, the mulitpactor in normal field between the metal boundary and the window disk is studied. Through Monte Carlo (MC) simulations, the susceptive curve is fitted and analyzed. The secondary electrons' avalanche behavior under the normal RF field is discussed. It is noticed that the one-sided multipactor is excited within a very limited Vrf-fD region when two-sided multipactor is excited initially. The development condition from two-sided multipactor to the one-sided multipactor is proposed. Through analyzing and MC simulation, the condition is achieved. When the normal RF electric field can satisfy the phase focus conditions of one-sided multipactor, the two-sided multipactor will develop into one-sided multpactor and then reach a saturation value. Meanwhile, the initial effect of electrostatic field on one-sided multipactor is also discussed. On condition that two-sided multipactor can be excited, the number of secondary electrons can increase up to a saturation value when Edc0 is lower than the minimal saturate value of Edc. When Edc0 is lager than the minimal saturate value of Edc and in the Edc/Erf threshold of one-sided resonant multipactor, the number of secondary electrons can also increase to a saturate value. However, When Edc0 is lager than the minimal saturate value of Edc but beyond the Edc/Erf threshold of one-sided resonant multipactor, secondary electrons will be suppressed.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB328901)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328901).
    [1]

    Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqz J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023

    [2]

    Vaughan J R M 1961 IEEE Trans. ED 8 302

    [3]

    Saito Y, Matuda N, Anami S, Kinbara A, Horikoshi G, Tanaka J 1989 IEEE Tran. Electr. Insul. 24 1029

    [4]

    Saito Y 1995 IEEE Trans. Dielectr. Electr. Insul. 2 243

    [5]

    Michizono S, Saito Y, Yamaguchi S, Anami S, Matuda N, Kinbara A 1993 IEEE Trans. Electr. Insul. 28 692

    [6]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [7]

    Michizono S 2007 IEEE Trans. Dielectr. Electr. Insul. 14 583

    [8]

    Michizono S, Saito Y 2011 Vacuum 60 235

    [9]

    Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296

    [10]

    Neuber A, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1999 J. Appl. Phys. 86 1724

    [11]

    Farnworth P T 1934 J. Franklin Inst. 218 411

    [12]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon Press)

    [13]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [14]

    Miller H C 1989 IEEE Trans. Electr. Insul. 24 765

    [15]

    Rasch J 2012 Ph. D. Dissertation (Sweden: Chalmers University of Technology)

    [16]

    Kishek R, Lau Y 1995 Phys. Rev. Lett. 75 1218

    [17]

    Gorshkova M A, Nechaev V E 1999 Radiophys. Quantum Electron. 42 967

    [18]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [19]

    Torregrosa G, Coves A, Vicente C P, Perez A M, Gimeno B, Boria V E 2006 IEEE Electron Dev. Lett. 27 619

    [20]

    Coves A, Torregrosa P G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. ED 55 2505

    [21]

    Hays R, Preist D H 1964 Research on Microwave Window Multipactor and its Inhibition U. S. A. Army Electronics Laboratories

    [22]

    Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278

    [23]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [24]

    Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496

    [25]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 63 167901]

    [26]

    Lay K A, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [27]

    Vaughan J R M 1993 IEEE Trans. ED 40 830

    [28]

    Barker J R, Schamiloglu E (translated by translating group of ''High-Power Microwave ource, Technologies'') 2005 High-Power Microwave ource and Technologies (Beijing: Qinghua University Press) (in Chinese) [Barker J R, Schamiloglu E编 (《高功率微波源与技术》翻译组译) 2005 高功率微波源与技术 (北京: 清华大学出版社)]

    [29]

    Semenov V, Nechaev V, Rakova E, Zharova N, Anderson D, Lisak M, Puech J 2005 Phys. Plasmas 12 073508

    [30]

    Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102

    [31]

    Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M, Puech J, Lapierre L, Sombrin J 2002 Phys. Plasmas 9 4736

  • [1]

    Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqz J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023

    [2]

    Vaughan J R M 1961 IEEE Trans. ED 8 302

    [3]

    Saito Y, Matuda N, Anami S, Kinbara A, Horikoshi G, Tanaka J 1989 IEEE Tran. Electr. Insul. 24 1029

    [4]

    Saito Y 1995 IEEE Trans. Dielectr. Electr. Insul. 2 243

    [5]

    Michizono S, Saito Y, Yamaguchi S, Anami S, Matuda N, Kinbara A 1993 IEEE Trans. Electr. Insul. 28 692

    [6]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [7]

    Michizono S 2007 IEEE Trans. Dielectr. Electr. Insul. 14 583

    [8]

    Michizono S, Saito Y 2011 Vacuum 60 235

    [9]

    Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296

    [10]

    Neuber A, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1999 J. Appl. Phys. 86 1724

    [11]

    Farnworth P T 1934 J. Franklin Inst. 218 411

    [12]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon Press)

    [13]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [14]

    Miller H C 1989 IEEE Trans. Electr. Insul. 24 765

    [15]

    Rasch J 2012 Ph. D. Dissertation (Sweden: Chalmers University of Technology)

    [16]

    Kishek R, Lau Y 1995 Phys. Rev. Lett. 75 1218

    [17]

    Gorshkova M A, Nechaev V E 1999 Radiophys. Quantum Electron. 42 967

    [18]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [19]

    Torregrosa G, Coves A, Vicente C P, Perez A M, Gimeno B, Boria V E 2006 IEEE Electron Dev. Lett. 27 619

    [20]

    Coves A, Torregrosa P G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. ED 55 2505

    [21]

    Hays R, Preist D H 1964 Research on Microwave Window Multipactor and its Inhibition U. S. A. Army Electronics Laboratories

    [22]

    Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278

    [23]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [24]

    Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496

    [25]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 63 167901]

    [26]

    Lay K A, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [27]

    Vaughan J R M 1993 IEEE Trans. ED 40 830

    [28]

    Barker J R, Schamiloglu E (translated by translating group of ''High-Power Microwave ource, Technologies'') 2005 High-Power Microwave ource and Technologies (Beijing: Qinghua University Press) (in Chinese) [Barker J R, Schamiloglu E编 (《高功率微波源与技术》翻译组译) 2005 高功率微波源与技术 (北京: 清华大学出版社)]

    [29]

    Semenov V, Nechaev V, Rakova E, Zharova N, Anderson D, Lisak M, Puech J 2005 Phys. Plasmas 12 073508

    [30]

    Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102

    [31]

    Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M, Puech J, Lapierre L, Sombrin J 2002 Phys. Plasmas 9 4736

  • [1] 舒盼盼, 赵朋程, 王瑞. 110 GHz微波输出窗内表面次级电子倍增特性的电磁粒子模拟.  , 2023, 72(9): 095202. doi: 10.7498/aps.72.20222235
    [2] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响.  , 2022, 0(0): . doi: 10.7498/aps.7120220537
    [3] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响.  , 2022, 71(21): 214206. doi: 10.7498/aps.71.20220537
    [4] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 材料二次电子产额对腔体双边二次电子倍增的影响.  , 2018, 67(3): 037901. doi: 10.7498/aps.67.20172119
    [5] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 二次电子倍增对射频平板腔建场过程的影响.  , 2018, 67(17): 177902. doi: 10.7498/aps.67.20180656
    [6] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 腔体双边二次电子倍增一阶与三阶模式瞬态特性对比.  , 2017, 66(20): 207901. doi: 10.7498/aps.66.207901
    [7] 鞠旭东, 董明义, 周传兴, 董静, 赵豫斌, 章红宇, 祁辉荣, 欧阳群. 基于阻性阳极读出方法的气体电子倍增器二维成像性能.  , 2017, 66(7): 072902. doi: 10.7498/aps.66.072902
    [8] 张余炼, 祁辉荣, 胡碧涛, 温志文, 王海云, 欧阳群, 陈元柏, 张建. 基于复合结构的气体电子倍增器增益模拟和实验研究.  , 2017, 66(14): 142901. doi: 10.7498/aps.66.142901
    [9] 李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲. 横磁模下介质表面二次电子倍增的抑制.  , 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [10] 张雪, 王勇, 范俊杰, 张瑞. 圆窗片表面次级电子倍增效应的数值模拟.  , 2014, 63(22): 227901. doi: 10.7498/aps.63.227901
    [11] 张雪, 范俊杰, 王勇. 刻周期半圆弧槽窗片对次级电子倍增效应的抑制.  , 2014, 63(22): 227902. doi: 10.7498/aps.63.227902
    [12] 张雪, 王勇, 范俊杰, 朱方, 张瑞. 金属壁与介质窗之间次级电子倍增效应的研究.  , 2014, 63(16): 167901. doi: 10.7498/aps.63.167901
    [13] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究.  , 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [14] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应.  , 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [15] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响.  , 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [16] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究.  , 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [17] 朱方, 张兆传, 戴舜, 罗积润. 电介质表面纵向射频电场对次级电子倍增效应的影响.  , 2011, 60(8): 084103. doi: 10.7498/aps.60.084103
    [18] 董静, 吕新宇, 刘贲, 刘荣光, 马骁妍, 王岚, 陈元柏, 欧阳群, 谢一冈. 基于读出条读出的二维位置灵敏气体电子倍增器的研制.  , 2010, 59(9): 6029-6035. doi: 10.7498/aps.59.6029
    [19] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响.  , 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [20] 郝建红, 丁 武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象.  , 2006, 55(9): 4789-4794. doi: 10.7498/aps.55.4789
计量
  • 文章访问数:  5535
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-28
  • 修回日期:  2015-06-18
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map