搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镧掺杂BaSnO3薄膜的电学和光学特性

费潇 罗炳成 金克新 陈长乐

引用本文:
Citation:

镧掺杂BaSnO3薄膜的电学和光学特性

费潇, 罗炳成, 金克新, 陈长乐

Electrical and optical behaviors of La-doped BaSnO3 thin film

Fei Xiao, Luo Bing-Cheng, Jin Ke-Xin, Chen Chang-Le
PDF
导出引用
  • 利用射频磁控溅射法在(LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (001)单晶基底上生长了镧掺杂BaSnO3外延薄膜. 通过Hall效应和热电势测量证实了镧掺杂BaSnO3薄膜具有n型简并半导体特征, 并且基于载流子浓度和Seebeck系数计算出电子的有效质量为0.31m0 (m0为自由电子质量). 镧掺杂BaSnO3薄膜在可见波段具有良好的透明性(透过率大于73%). 基于介电模型对薄膜的透过率曲线进行拟合, 从拟合结果中不仅得到了薄膜的厚度为781.2 nm, 能带宽度为3.43 eV、 带尾宽度为0.27 eV和复光学介电常数随波长的变化规律, 而且也强力地支持了基于电学参数计算电子有效质量的正确性.
    La-doped BaSnO3 is regarded as a very essential material to construct transparent perovskite devices due to its super high electrical mobility in perovskite transparent conducting oxides. For understanding the high electrical mobility, the effective mass of the carrier in La-doped BaSnO3 is a critical factor and should be determined. In this work, the performances of epitaxial La-doped BaSnO3 thin films grown on (LaAlO3)0.3 (SrAl0.5Ta0.5O3)0.7 (001) substrate by radio-frequency (RF) magnetron sputtering technique are investigated. The electrical properties (resistivity, carrier density, mobility and Seebeck coefficient) and the optical transmittance are analyzed. In addition, it is proved from both the Hall effect and thermoelectric power measurements that the La-doped BaSnO3 thin films are n-type degenerate semiconductor. At 300 K, the resistivity, carrier density, mobility and Seebeck coefficient are 0.987 mΩ·cm, 2.584×1020 cm-3, 24.49 cm2·V-1·s-1 and 45.71 μV/K, respectively. The electron effective mass ~ 0.31m0 (m0, the free electron mass) is extracted by combining the Seebeck coefficient and carrier density. Ba0.99La0.01SnO3 (BLSO) thin film exhibits a high optical transmittance of 73% in the visible spectral region. In order to derive the band-gap energy, the complex dielectric constant, and the film thickness, the transmittance spectrum is simulated based on the dielectric model comprising the band-gap transition (O'Leary-Johnson-Lim model) and free electron excitation (Drude-Lorentz model). The band-gap energy, exponential band tail and thickness of the BLSO thin film are 3.43 eV, 0.27 eV and 781.2 nm, respectively. Wavelength-dependence of complex dielectric function of the BLSO thin film is also obtained from the fitted line. Additionally, the parameters (optical carrier density and mobility) resulting from the optical measurement are in agreement with the results from the electrical measurement, which supports the calculated electron effective mass aforementioned.
    • 基金项目: 国家自然科学基金(批准号: 51202195, 51172183, 61471301)和陕西省自然科学基金(批准号: 2014JQ6218)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51202195, 51172183, 61471301) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JQ6218).
    [1]

    Huang H 2010 Nat. Photon. 4 134

    [2]

    Chen Y Z, Nini P, Sun J R, Shen B G, Soren L 2013 Chin. Phys. B 22 116803

    [3]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805]

    [4]

    Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G doi:10.1088/1674-1056/23/8/087304

    [5]

    Wang H F, Liu Q Z, Chen F, Gao G Y, Wu W B, Chen X H 2007 J. Appl. Phys. 101 106105

    [6]

    Kim H J, Kim U, Kim H M, Kim T H, Mun H S, Jeon B G, Hong K T, Lee W J, Ju C, Kim K H, Char K 2012 Appl. Phys. Express 5 061102

    [7]

    Liu Q Z, Liu J J, Li B, Li H, Zhu G P, Dai K, Liu Z L, Zhang P, Dai J M 2012 Appl. Phys. Lett. 101 241901

    [8]

    Shan C, Huang T, Zhang J Z, Han M J, Li Y W, Hu Z G, Chu J H 2014 J. Phys. Chem. C 118 6994

    [9]

    Wei R H, Tang X W, Hui Z Z, Luo X, Dai J M, Yang J, Song W H, Chen L, Zhu X G, Zhu X B, Sun Y P 2015 Appl. Phys. Lett. 106 101906

    [10]

    Mizoguchi H, Chen P, Boolchand P, Ksenofontov V, Felser C, Barnes P W, Woodward P M DOI: 10.1021/cm4019309

    [11]

    Tan X Y, Chen C L, Jin K X 2011 Acta Phys. Sin. 60 107105 (in Chinese) [谭兴毅, 陈长乐, 金克新 2011 60 107105]

    [12]

    Hadjarab B, Bouguelia A, Trari M 2007 J. Phys. D: Appl. Phys. 40 5833

    [13]

    Seo D, Yu K, Chang Y J, Sohn E, Kim K H, Choi E J 2014 Appl. Phys. Lett. 104 022102

    [14]

    Xing S M, Shan C, Jiang K, Zhu J J, Li Y W, Hu Z G, Chu J H 2015 J. Appl. Phys. 117 103107

    [15]

    Kim H J, Kim U, Kim T H, Kim J, Kim H M, Jeon B G, Lee W J, Mun H S, Hong K T, Yu J, Char K, Kim K H 2012 Phys. Rev. B 86 165205

    [16]

    Luo B C, Wang J, Cao X S, Jin K X 2014 Phys. Status Solidi A 211 705

    [17]

    Luo B C, Zhang J, Wang J, Ran P X 2015 Ceram. Int. 41 2668

    [18]

    Coutts T J, Young D L, Li X N 2000 MRS Bull. 25 58

    [19]

    Mergel D, Qiao Z 2002 J. Phys. D: Appl. Phys. 35 794

    [20]

    O'Leary S K, Johnson S R, Lim P K 1997 J. Appl. Phys. 82 3334

    [21]

    Luo B C, Chen C L, Jin K X, Zhou C C 2011 Thin Solid Films 519 3632

    [22]

    Mun H, Kim U, Kim H M, Park C, Kim T H, Kim H J, Kim K H, Char K 2013 Appl. Phys. Lett. 102 252105

  • [1]

    Huang H 2010 Nat. Photon. 4 134

    [2]

    Chen Y Z, Nini P, Sun J R, Shen B G, Soren L 2013 Chin. Phys. B 22 116803

    [3]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805]

    [4]

    Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G doi:10.1088/1674-1056/23/8/087304

    [5]

    Wang H F, Liu Q Z, Chen F, Gao G Y, Wu W B, Chen X H 2007 J. Appl. Phys. 101 106105

    [6]

    Kim H J, Kim U, Kim H M, Kim T H, Mun H S, Jeon B G, Hong K T, Lee W J, Ju C, Kim K H, Char K 2012 Appl. Phys. Express 5 061102

    [7]

    Liu Q Z, Liu J J, Li B, Li H, Zhu G P, Dai K, Liu Z L, Zhang P, Dai J M 2012 Appl. Phys. Lett. 101 241901

    [8]

    Shan C, Huang T, Zhang J Z, Han M J, Li Y W, Hu Z G, Chu J H 2014 J. Phys. Chem. C 118 6994

    [9]

    Wei R H, Tang X W, Hui Z Z, Luo X, Dai J M, Yang J, Song W H, Chen L, Zhu X G, Zhu X B, Sun Y P 2015 Appl. Phys. Lett. 106 101906

    [10]

    Mizoguchi H, Chen P, Boolchand P, Ksenofontov V, Felser C, Barnes P W, Woodward P M DOI: 10.1021/cm4019309

    [11]

    Tan X Y, Chen C L, Jin K X 2011 Acta Phys. Sin. 60 107105 (in Chinese) [谭兴毅, 陈长乐, 金克新 2011 60 107105]

    [12]

    Hadjarab B, Bouguelia A, Trari M 2007 J. Phys. D: Appl. Phys. 40 5833

    [13]

    Seo D, Yu K, Chang Y J, Sohn E, Kim K H, Choi E J 2014 Appl. Phys. Lett. 104 022102

    [14]

    Xing S M, Shan C, Jiang K, Zhu J J, Li Y W, Hu Z G, Chu J H 2015 J. Appl. Phys. 117 103107

    [15]

    Kim H J, Kim U, Kim T H, Kim J, Kim H M, Jeon B G, Lee W J, Mun H S, Hong K T, Yu J, Char K, Kim K H 2012 Phys. Rev. B 86 165205

    [16]

    Luo B C, Wang J, Cao X S, Jin K X 2014 Phys. Status Solidi A 211 705

    [17]

    Luo B C, Zhang J, Wang J, Ran P X 2015 Ceram. Int. 41 2668

    [18]

    Coutts T J, Young D L, Li X N 2000 MRS Bull. 25 58

    [19]

    Mergel D, Qiao Z 2002 J. Phys. D: Appl. Phys. 35 794

    [20]

    O'Leary S K, Johnson S R, Lim P K 1997 J. Appl. Phys. 82 3334

    [21]

    Luo B C, Chen C L, Jin K X, Zhou C C 2011 Thin Solid Films 519 3632

    [22]

    Mun H, Kim U, Kim H M, Park C, Kim T H, Kim H J, Kim K H, Char K 2013 Appl. Phys. Lett. 102 252105

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 潘磊, 宋宝安, 肖传富, 张培晴, 林常规, 戴世勋. 两种Ge-Sb-Se薄膜的光学性质及微观结构.  , 2020, 69(11): 114201. doi: 10.7498/aps.69.20200145
    [3] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [4] 程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂. Cu,O共掺杂AlN晶体电子结构与光学性质研究.  , 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [5] 余志强, 张昌华, 郎建勋. P掺杂硅纳米管电子结构与光学性质的研究.  , 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [6] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究.  , 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [7] 牛忠彩, 何智兵, 张颖, 韦建军, 廖国, 杜凯, 唐永建. 射频功率对辉光聚合物薄膜结构与光学性质的影响.  , 2012, 61(10): 106804. doi: 10.7498/aps.61.106804
    [8] 李春霞, 党随虎. Ag, Zn掺杂对CdS电子结构和光学性质的影响.  , 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [9] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究.  , 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [10] 于峰, 王培吉, 张昌文. Al掺杂SnO2 材料电子结构和光学性质.  , 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [11] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究.  , 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [12] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究.  , 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [13] 邢海英, 范广涵, 杨学林, 张国义. 金属有机化学气相淀积技术制备GaMnN薄膜材料光学性质研究.  , 2010, 59(1): 504-507. doi: 10.7498/aps.59.504
    [14] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [15] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质.  , 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [16] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究.  , 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [17] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [18] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质.  , 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究.  , 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  6633
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-02
  • 修回日期:  2015-06-25
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map