搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FTO/VO2/FTO结构的VO2薄膜电压诱导相变光调制特性

郝如龙 李毅 刘飞 孙瑶 唐佳茵 陈培祖 蒋蔚 伍征义 徐婷婷 方宝英 王晓华 肖寒

引用本文:
Citation:

基于FTO/VO2/FTO结构的VO2薄膜电压诱导相变光调制特性

郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒

Optical modulation characteristics of VO2 thin film due to electric field induced phase transition in the FTO/VO2/FTO structure

Hao Ru-Long, Li Yi, Liu Fei, Sun Yao, Tang Jia-Yin, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Xu Ting-Ting, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han
PDF
导出引用
  • 采用直流磁控溅射和后退火工艺在掺氟的SnO2(FTO)导电玻璃衬底上制备VO2薄膜, 研究了不同退火时间和不同比例的氮氧气氛对VO2薄膜性能的影响, 对VO2薄膜的结晶取向、表面形貌、表面元素的相对含量和透过率随波长变化进行了测试分析, 结果表明在最佳工艺条件下制备得到了组分相对单一的VO2薄膜. 基于FTO/VO2/FTO结构在VO2薄膜两侧的透明导电膜上施加电压并达到阈值电压时, 观察到了明显的电流突变. 当接触面积为3 mm×3 mm时, 阈值电压为1.7 V, 阈值电压随接触面积的增大而增大. 与不加电压的情况相比, FTO/VO2/FTO结构在电压作用下高低温的红外透过率差值可达28%, 经反复施加电压, 该结构仍保持性能稳定, 具有较强的电致调控能力.
    VO2 thin films have been studied for their semiconductor-metal reversible transition from the monoclinic to the rutile structure, where the electrical and optical properties undergo a drastic change by increasing the temperature or by applying a voltage. VO2 film is becoming a promising material for optical switch, optical storage, optical modulator, smart window, and micro-bolometer. The preparation procedures of the FTO/VO2/FTO structure in detail are as follows: First, the F-doped SnO2 conductive glass (FTO) substrates are cleaned sequentially in acetone, ethanol, and deionized water for 10 min using an ultrasonic cleaning equipment at a frequency of 20 kHz. When the FTO substrates was cleaned, they are dried with nitrogen. Second, the dried FTO substrates are placed in the chamber of a DC magnetron sputtering system equipped with a high-purity metal target of V (99.9%). After argon (99.999%) of 80 sccm flux was discharged with the current of 2 A and the voltage of 400 V for 2 min, the vanadium films are deposited on the FTO substrates. Third, the prepared vanadium films are annealed for different annealing time in an atmosphere composed of different proportions of nitrogen-oxygen. Then another layer thickness of 350 nm of FTO conductive film is deposited on the VO2 thin film by using the plasma enhanced chemical vapor deposition method. Finally, different sizes of the FTO/VO2/FTO structure are prepared by using photolithography and chemical etching processes. The effect of different annealing time and different proportions of nitrogen-oxygen atmosphere on the VO2 thin films has been studied. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and spectrophotometer are then used to test and analyze the crystal structure, surface morphology, surface roughness, the relative content of the surface elements, and transmittance of the VO2/FTO composite films. Results show that a relatively single component VO2 thin film can be obtained under the optimum condition. The current abrupt change can be seen at the threshold voltage when the FTO/VO2/FTO structure is applied to voltage on both the transparent conductive films of the VO2 thin film. The threshold voltage is 1.7 V when the contact area is 3 mm×mm, and the threshold voltage increases as the contact area increases. When the contact area is 6 mm × 6 mm, the threshold voltage of the thin film phase transition is 4.3 V; when the contact area is 8 mm × 8 mm, the threshold voltage of the thin film phase transition is 9.3 V. Compared with the no voltage situation, the infrared transmittance difference of the FTO/VO2/FTO structure under the effect of voltage is up to 28% before and after the transition. The structure remains stable with a strong electrochromic capacity when it is applied with voltage repeatedly. This brings about many new opportunities for optoelectronic devices and industrial production.
      通信作者: 李毅, optolyclp@263.net
    • 基金项目: 国家高技术研究发展计划“863”计划(批准号: 2006AA03Z348)、教育部科学技术研究重点项目(批准号: 207033)、上海市科学技术委员会科技攻关计划项目(批准号: 06DZ11415)、 上海市教育委员会科技创新重点项目(批准号: 10ZZ94)和上海领军人才培养计划资助项目(批准号: 2011-026)资助的课题.
      Corresponding author: Li Yi, optolyclp@263.net
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z348), the Foundation for Key Program of Ministry of Education China (Grant No. 207033), the Science and Technology Research Project of Shanghai Science and Technology Commission, China (Grant No. 06DZ11415) the Key Science and Technology Research Project of Shanghai Committee, China (Grant No. 10ZZ94), and the Shanghai Talent Leading Plan, China (Grant No. 2011-026).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837

    [3]

    Lee Y W, Kim B J, Lim J W, Jin Y S 2008 Appl. Phys. Lett. 92 162903

    [4]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [5]

    Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503

    [6]

    Lee K W, Kweon J J, Lee C E, Gedanken A, Ganesan R 2010 Appl. Phys. Lett. 96 243111

    [7]

    Sugimoto N, Onoda S, Nagaosa N 2008 Phys. Rev. B 78 155104

    [8]

    Brassard D, Fourmaux S, Jacques M J, Kieffer J C, Khahani M A 2005 Appl. Phys. Lett. 87 051910

    [9]

    Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [10]

    Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106

    [11]

    He S B, Wang S F, Ding Q P, Yuan X D, Zheng W G, Xiang X, Li Z J, Zu X T 2013 Chin. Phys. B 22 058102

    [12]

    Hu Z Q, Zhang C N, Qiu P, Liu L H, Okuya M, Kaneko S 2005 J. Funct. Mater. 36 1886 (in Chinese) [胡志强, 张晨宁, 邱鹏, 刘俐宏, 奥谷昌之, 金子正治 2005 功能材料 36 1886]

    [13]

    Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102(in Chinese) [佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 62 208102]

    [14]

    Shen N, Li Y, Yi X J 2006 J. Infra. Milli. Waves 25 199 (in Chinese) [沈楠, 李毅, 易新建 2006 红外与毫米波学报 25 199]

    [15]

    Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics· Laser 22 656 (in Chinese) [张楷亮, 韦晓莹, 王芳, 武长强, 赵金石 2011 光电子 · 激光 22 656]

    [16]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102(in Chinese) [熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 64 017102]

    [17]

    Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443

    [18]

    Zhou Y, Chen X N, Ko C, Yang Z, Mouli C, Ramanthan S 2013 IEEE Electr Device L 34 202

    [19]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [20]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [21]

    Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480(in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]

    [22]

    Continenza A, Massidda S, Posternak M 1999 Phys. Rev.B 60 15699

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837

    [3]

    Lee Y W, Kim B J, Lim J W, Jin Y S 2008 Appl. Phys. Lett. 92 162903

    [4]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [5]

    Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503

    [6]

    Lee K W, Kweon J J, Lee C E, Gedanken A, Ganesan R 2010 Appl. Phys. Lett. 96 243111

    [7]

    Sugimoto N, Onoda S, Nagaosa N 2008 Phys. Rev. B 78 155104

    [8]

    Brassard D, Fourmaux S, Jacques M J, Kieffer J C, Khahani M A 2005 Appl. Phys. Lett. 87 051910

    [9]

    Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [10]

    Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106

    [11]

    He S B, Wang S F, Ding Q P, Yuan X D, Zheng W G, Xiang X, Li Z J, Zu X T 2013 Chin. Phys. B 22 058102

    [12]

    Hu Z Q, Zhang C N, Qiu P, Liu L H, Okuya M, Kaneko S 2005 J. Funct. Mater. 36 1886 (in Chinese) [胡志强, 张晨宁, 邱鹏, 刘俐宏, 奥谷昌之, 金子正治 2005 功能材料 36 1886]

    [13]

    Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102(in Chinese) [佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 62 208102]

    [14]

    Shen N, Li Y, Yi X J 2006 J. Infra. Milli. Waves 25 199 (in Chinese) [沈楠, 李毅, 易新建 2006 红外与毫米波学报 25 199]

    [15]

    Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics· Laser 22 656 (in Chinese) [张楷亮, 韦晓莹, 王芳, 武长强, 赵金石 2011 光电子 · 激光 22 656]

    [16]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102(in Chinese) [熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 64 017102]

    [17]

    Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443

    [18]

    Zhou Y, Chen X N, Ko C, Yang Z, Mouli C, Ramanthan S 2013 IEEE Electr Device L 34 202

    [19]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [20]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [21]

    Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480(in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]

    [22]

    Continenza A, Massidda S, Posternak M 1999 Phys. Rev.B 60 15699

  • [1] 孙肖宁, 曲兆明, 王庆国, 袁扬. VO2纳米粒子填充型聚合物薄膜电致相变特性.  , 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [2] 张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒. 掺钨VO2薄膜的电致相变特性.  , 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [3] 徐婷婷, 李毅, 陈培祖, 蒋蔚, 伍征义, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒. 基于AZO/VO2/AZO结构的电压诱导相变红外光调制器.  , 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [4] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究.  , 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [5] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究.  , 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [6] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究.  , 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [7] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计.  , 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [8] 陈先梅, 王晓霞, 郜小勇, 赵显伟, 刘红涛, 张飒. 掺银氧化锌纳米棒的水热法制备研究.  , 2013, 62(5): 056104. doi: 10.7498/aps.62.056104
    [9] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型.  , 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [10] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型.  , 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [11] 邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武. 金属Pt薄膜上二氧化钒的制备及其电致相变性能研究.  , 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [12] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型.  , 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [13] 李妤晨, 张鹤鸣, 张玉明, 胡辉勇, 徐小波, 秦珊珊, 王冠宇. 新型高速半导体器件IMOS阈值电压解析模型.  , 2012, 61(4): 047303. doi: 10.7498/aps.61.047303
    [14] 王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌. 亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型.  , 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [15] 屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇. 多晶SiGe栅量子阱pMOSFET阈值电压模型.  , 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [16] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压.  , 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [17] 张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军. 应变Si沟道nMOSFET阈值电压模型.  , 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [18] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究.  , 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [19] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型.  , 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [20] 代月花, 陈军宁, 柯导明, 孙家讹. 考虑量子化效应的MOSFET阈值电压解析模型.  , 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
计量
  • 文章访问数:  6233
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-21
  • 修回日期:  2015-05-19
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map