搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个新的自由能函数对介电高弹薄膜的多组等双轴预拉伸下力电耦合实验的预测

蒋世明

引用本文:
Citation:

一个新的自由能函数对介电高弹薄膜的多组等双轴预拉伸下力电耦合实验的预测

蒋世明

A new free energy model for predicting the qual-biaxial tests of dielectric elastomers

Jiang Shi-Ming
PDF
导出引用
  • 当介电高弹聚合物薄膜被施以面内等双轴预拉伸后, 受到厚度方向的电压作用时, 薄膜在力场和电场共同作用下产生大变形. 电场采用Maxwell应力分析, 力场采用橡胶弹性模型分析. 拟合这类变形的常用橡胶弹性模型主要有Neo-Hookean, Arruda-Boyce, Gent等模型. 这些模型对实验数据的定量拟合存在不同程度的偏差. 通过对实验数据的分析, 结合数学方法, 提出了一个新的自由能函数模型. 通过该模型对VHB4905介电高弹聚合物薄膜的多组等双轴预拉伸电力耦合实验进行拟合, 并以Neo-Hookean, Gent模型作为对照, 结果与实验数据拟合很好, 比对照模型的偏差明显缩小.
    Dielectric elastomeric actuators (DEAs) have been intensely studied in the recent decades. Their attractive features include large deformation(380%), large energy density(3.4 J/g), light weight, fast response( 1 ms), and high efficiency (80%-90%). They can be used in medical devices, space robotices and energy harvesters. The core part of DEAs is a dielectric elastomeric film with two electordes. When pre-stretched forces are exerted on the film in plane direction and voltage is applied across its thickness, the film achieves a large deformation. Usually the effect of electric field is described by Maxwell stress E2, and the effect of mechanical field is described by free energy function models (such as Neo-Hookean model, Arruda-Boyce model and Gent model). There are deviations in varying degree between every models and tests of dielectric elastomer. No model works perfectly. In the present paper, a new free energy function model is given to reduce the deviation. According to the main models above, an undetermined parameter C(1, 2) is introduced. and i (W/i)= C( 1, 2)(i2- 1-2 2-2), pi = C( 1, 2)( pi2- p1-2p2-2)(i/ pi), i = 1, 2, are assumed. The new i ( W/i) and pi are substituted into the equation of equilibrium of dielectric elastomer film pi + E2 = i ( W/i), i = 1, 2. Under equal-biaxial pre-stretched condition, P1 = P2 = P, p1 = p2 = p, C(1, 2) = C(). The parameter C()= (V2/t0)2/( 2- -4-( p- p-4)(/ p)) is obtained. Through analysing the test results of VHB4905 which contains a series of equal-biaxial pre-stretched tests, the data (, C()) are obtained from the test data (, V). C() =a + beI1-3, (I1 = 12 + 22 + 32) can be determined by data points (, C()). By computing the integral of i ( W/i)= a + beI1-3)(i2- 1-2 2-2), i = 1, 2, a new free energy function W = (a/2)(I1-3) + b[eI1-3(I1-3-1) + 1] (the new model) is achieved. The test results of VHB4905 are fitted by Neo-Hookean, Gent model and the new model. Neo-Hookean model fits well only in small deformation. Gent model fits well only in small-middle deformation, and does not work well when stretch 3.5. The new model fits well in small, middle and large deformation. It is better than Neo-Hookean and Gent model. The new model can give big support in the study of dielectric elastomer materials and structure property, and can be used in engineering practice effectively.
      Corresponding author: Jiang Shi-Ming, jiangshiming80@163.com
    [1]

    Park S, Shrout T R 1997 J. Appl. Phys. 82 1804

    [2]

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505(in Chinese) [孙舒, 曹树谦 2012 61 210505]

    [3]

    Li H T, Qin W Y, Zhou Z Y, Lan C B 2014 Acta Phys. Sin. 63 220504(in Chinese) [李海涛, 秦卫阳, 周至勇, 蓝春波 2014 63 220504]

    [4]

    Qiang L, Zhang R, Tian Q L, Zheng L M 2015 Chin. Phys. B 24 053101

    [5]

    Mckay T, O’Brien B M, Calius E, Anderson I A 2010 Appl. Phys. Lett. 97 062911

    [6]

    Kaltseis R, Keplinger C, Baumgartner R, Kaltenbrunner M, Li T F, Mcachler P, Schwödiauer R, Suo Z G, Bauer S 2011 Appl. Phys. Lett. 99 162904

    [7]

    An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306(in Chinese) [安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 63 237306]

    [8]

    Pelrine R, Kornbluh R, Pei Q, Joseph J 2000 Science 287 836

    [9]

    Zhao X H, Suo Z G 2007 Appl. Phys. Lett. 91 061921

    [10]

    Liu Y J, Liu L W, Zhang Z, Shi L, Leng J S 2008 Appl. Phys. Lett. 93 106101

    [11]

    Zhao X H, Suo Z G 2010 Phys. Rev. Lett. 104 178302

    [12]

    Koh S J A, Keplinger C, Li T, Siegfried B, Suo Z 2011 Mechatronics, IEEE/ASME Transactions on 16 33

    [13]

    Suo Z, Zhu J 2009 Appl. Phys. Lett. 95 232909

    [14]

    Lu T, Huang J, Jordi C, Gabor K, Huang R, David R, Suo Z 2012 Soft Matter 8 6167

    [15]

    Zhu J, Kollosche M, Lu T, Kofod G, Suo Z 2012 Soft Matter 8 8840

    [16]

    Kollosche M, Zhu J, Suo Z, Kofod G 2012 Phys. Rev. E 85 051801

    [17]

    Stoyanov H, Brochu P, Niu X, Lai C, Yun S, Pei Q 2013 RSC Advances 3 2272

    [18]

    Akbari S, Rosset S, Shea H R 2013 EAPAD 8 687

    [19]

    Arruda E M, Boyce M C 1993 J Mech Phys. Solids 41 389

  • [1]

    Park S, Shrout T R 1997 J. Appl. Phys. 82 1804

    [2]

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505(in Chinese) [孙舒, 曹树谦 2012 61 210505]

    [3]

    Li H T, Qin W Y, Zhou Z Y, Lan C B 2014 Acta Phys. Sin. 63 220504(in Chinese) [李海涛, 秦卫阳, 周至勇, 蓝春波 2014 63 220504]

    [4]

    Qiang L, Zhang R, Tian Q L, Zheng L M 2015 Chin. Phys. B 24 053101

    [5]

    Mckay T, O’Brien B M, Calius E, Anderson I A 2010 Appl. Phys. Lett. 97 062911

    [6]

    Kaltseis R, Keplinger C, Baumgartner R, Kaltenbrunner M, Li T F, Mcachler P, Schwödiauer R, Suo Z G, Bauer S 2011 Appl. Phys. Lett. 99 162904

    [7]

    An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306(in Chinese) [安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 63 237306]

    [8]

    Pelrine R, Kornbluh R, Pei Q, Joseph J 2000 Science 287 836

    [9]

    Zhao X H, Suo Z G 2007 Appl. Phys. Lett. 91 061921

    [10]

    Liu Y J, Liu L W, Zhang Z, Shi L, Leng J S 2008 Appl. Phys. Lett. 93 106101

    [11]

    Zhao X H, Suo Z G 2010 Phys. Rev. Lett. 104 178302

    [12]

    Koh S J A, Keplinger C, Li T, Siegfried B, Suo Z 2011 Mechatronics, IEEE/ASME Transactions on 16 33

    [13]

    Suo Z, Zhu J 2009 Appl. Phys. Lett. 95 232909

    [14]

    Lu T, Huang J, Jordi C, Gabor K, Huang R, David R, Suo Z 2012 Soft Matter 8 6167

    [15]

    Zhu J, Kollosche M, Lu T, Kofod G, Suo Z 2012 Soft Matter 8 8840

    [16]

    Kollosche M, Zhu J, Suo Z, Kofod G 2012 Phys. Rev. E 85 051801

    [17]

    Stoyanov H, Brochu P, Niu X, Lai C, Yun S, Pei Q 2013 RSC Advances 3 2272

    [18]

    Akbari S, Rosset S, Shea H R 2013 EAPAD 8 687

    [19]

    Arruda E M, Boyce M C 1993 J Mech Phys. Solids 41 389

  • [1] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展.  , 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [2] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展.  , 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [3] 张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理. 基于Helmholtz自由能模型的聚乙烯的完全物态方程.  , 2017, 66(5): 056501. doi: 10.7498/aps.66.056501
    [4] 闵富红, 马美玲, 翟炜, 王恩荣. 基于继电特性函数的互联电力系统混沌控制.  , 2014, 63(5): 050504. doi: 10.7498/aps.63.050504
    [5] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究.  , 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [6] 孙志, 王暄, 韩柏, 宋伟, 张冬, 郭翔宇, 雷清泉. 静电力显微镜研究二相材料及其界面介电特性.  , 2013, 62(3): 030703. doi: 10.7498/aps.62.030703
    [7] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究.  , 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [8] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究.  , 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [9] 林 洁, 刘绍军, 李融武, 祝文军. 自由能方法与零压下Al的熔化温度.  , 2008, 57(1): 61-66. doi: 10.7498/aps.57.61
    [10] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型.  , 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [11] 余志明, 尹登峰. 一种晶体表面自由能的计算方法.  , 2005, 54(8): 3822-3830. doi: 10.7498/aps.54.3822
    [12] 高 琨, 付吉永, 刘德胜, 解士杰. 链间耦合对聚合物中双激子态反向极化的影响.  , 2005, 54(2): 665-668. doi: 10.7498/aps.54.665
    [13] 盛正卯, 骆军委. 利用扩展系综法计算水的自由能.  , 2003, 52(9): 2342-2346. doi: 10.7498/aps.52.2342
    [14] 袁保红, 陈钟贤, 姜永远, 孙秀冬, 周忠祥, 姚凤凤. 光折变聚合物中斩波调制对二波耦合增益系数的增强效应.  , 2002, 51(7): 1512-1516. doi: 10.7498/aps.51.1512
    [15] 张锡娟, 李广起, 孙鑫. 聚合物中产生双激子的新通道.  , 2002, 51(1): 134-137. doi: 10.7498/aps.51.134
    [16] 曹万强, 李景德. 聚合物介电弛豫的温度特性.  , 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [17] 刘红. 梳型聚合物液晶的介电反应.  , 2000, 49(4): 781-785. doi: 10.7498/aps.49.781
    [18] 李景德, 曹万强, 刘俊刁, 肖忠模. 聚合物结构转变中的介电信息.  , 1998, 47(9): 1548-1554. doi: 10.7498/aps.47.1548
    [19] 向天翔. 分子聚合物中间态耦合振动预离解理论.  , 1990, 39(3): 359-366. doi: 10.7498/aps.39.359
    [20] 丁厚昌, 乔登江, 张宗燧. 面心晶格的固溶体的自由能.  , 1957, 13(6): 515-524. doi: 10.7498/aps.13.515
计量
  • 文章访问数:  5945
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-15
  • 修回日期:  2015-05-08
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map