搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种含横向圆柱形空腔的声学覆盖层的去耦机理分析

黄凌志 肖勇 温激鸿 杨海滨 温熙森

引用本文:
Citation:

一种含横向圆柱形空腔的声学覆盖层的去耦机理分析

黄凌志, 肖勇, 温激鸿, 杨海滨, 温熙森

Analysis of decoupling mechanism of an acoustic coating layer with horizontal cylindrical cavities

Huang Ling-Zhi, Xiao Yong, Wen Ji-Hong, Yang Hai-Bin, Wen Xi-Sen
PDF
导出引用
  • 在水下结构表面敷设去耦覆盖层是降低其声辐射的有效途径. 为了深入分析一种含横向无限长空腔的覆盖层的去耦机理, 本文将其等效为均匀介质, 建立了敷设这种覆盖层的单向基体板在线激励下的声辐射模型, 验证了计算模型的有效性, 并利用计算模型对含横向空腔覆盖层的去耦机理进行了分析. 研究结果表明: 基体板-覆盖层接触面的能量流以纵波能量为主, 而横波能量很小, 因而计算覆盖层的去耦特性时可以忽略横波的作用; 和均匀覆盖层相比, 横向空腔型覆盖层在中高频段极大地增强了基体板的力阻抗, 从而更有效地抑制了基体板的振速; 此外, 和均匀覆盖层相比, 横向空腔型覆盖层和水的阻抗失配更大, 使其在中高频具有良好的振动传递损失特性. 因此, 总体而言, 含横向空腔的覆盖层相比均匀覆盖层具有更好的中高频去耦性能.
    Introducing the decoupling coating is an effective way to reduce sound radiation from underwater structures. In order to investigate the decoupling mechanism of a viscoelastic coating layer with horizontal cylindrical cavities, such a coating layer is approximated to a homogeneous layer with equivalent material properties, and a theoretical model is also developed to predict the sound radiation from a finite plate with such a decoupling coating layer. #br#The validity of the theoretical model is confirmed by comparison with the finite element method; and the decoupling mechanism of the coating layer is discussed. Numerical analysis shows that: (1) The energy flow across the interface between the plate and coating layer is mainly conveyed by longitudinal waves. (2) At a low frequency, the coating layer has nearly no decoupling effect. (3) In contrast with a homogeneous coating layer, the coating layer with horizontal cavities can greatly enhance the mechanical impedance in the mid- and high-frequency areas; hence the mean square velocity is effectively suppressed in the same area. (4) Compared with the homogeneous coating layer, the coating layer with horizontal cavities has a larger impedance mismatch with water, thus it exhibits great vibration transmission loss. Therefore, in general, the coating layer with horizontal cylindrical cavities has a better decoupling performance than the homogeneous coating layer in the mid- and high-frequency areas.
    • 基金项目: 国家自然科学基金(批准号: 51305448, 51275519)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51305448, 51275519).
    [1]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wen X S 2007 Acta Phys. Sin. 56 4700 (in Chinese) [赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森 2007 56 4700]

    [2]

    Ivansson S M 2012 J. Acoust. Soc. Am. 131 2622

    [3]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wang G, Wen X S 2006 Chin. Phys. Lett. 23 2132

    [4]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [5]

    Yang H B, Li Y, Zhao H G, Wen J, Wen X S 2014 Chin. Phs. B 23 104301

    [6]

    L L, Wen J H, Zhao H G, Meng H, Wen X S 2012 Acta Phys. Sin. 61 214301 (in Chinese) [吕林梅, 温激鸿, 赵宏刚, 孟浩, 温熙森 2012 61 214301]

    [7]

    House J R C 1991 Proc. I. O. A 13 166

    [8]

    Foin O, Berry A 2000 J. Acoust. Soc. Am. 107 2501

    [9]

    Berry A, Foin O 2001 J. Acoust. Soc. Am. 109 2704

    [10]

    Tao M, Fan J, Tang W 2008 Acta Acoust. 33 220 (in Chinese) [陶猛, 范军, 汤渭霖 2008 声学学报 33 220]

    [11]

    Tao M, Tang W L, Hua H X 2010 J. Vib. Acoust. 132 61001

    [12]

    Wang X Z, Zhang A M, Pang F Z, Yao X L 2014 J. Sound Vib. 333 228

    [13]

    Zhu D W, Huang X C, Wang Y, Xiao F, Hua H 2014 J. Mechanical Engineering Science (in press)

    [14]

    He S, He Y A, Zhang W Q 2014 Acta Acoust. 39 177 (in Chinese) [何世平, 何元安, 张文群 2014 声学学报 39 177]

    [15]

    Yang H B, Li Y, Zhao H G, Wen J H, Wen X S 2013 Acta Phys. Sin. 62 154301 (in Chinese) [杨海滨, 李岳, 赵宏刚, 温激鸿, 温熙森 2013 62 154301]

    [16]

    Ivansson S M 2014 J. Acoust. Soc. Am. 135 3338

    [17]

    Qiu C Y, Liu Z Y, Mei J, Ke M Z 2005 Solid State Commun. 134 765

    [18]

    Mei J, Liu Z Y, Qiu C Y 2005 J. Phys. :Condens. Matter 17 3735

    [19]

    Auld B A 1973 Acoustic Fields and Waves in Solids(Vol. 2) (New York:John Wiley & Sons) pp25-27

    [20]

    Arfken G B, Weber H J 2005 Mathematical Methods for Physicists (California:Elsevier Academic Press) pp687

    [21]

    Mei J, Liu Z Y, Shi J, Tian D C 2003 Phys. Rev. B 67 245107

    [22]

    Liu Z, Chan C T, Sheng P 2000 Phys. Rev. B 62 2446

    [23]

    Shen H J, Wen J H, Michael P P, Yu D L, Cai L, Wen X S 2013 Modelling Simul. Mater. Sci. Eng 21 65011

    [24]

    Shen H J, Michael P P, Wen J H, Yu D L, Cai L, Wen X S 2012 J. Phys. D:Appl. Phys. 45 285401

    [25]

    Fokin V, Ambati M, Sun C, Zhang X 2007 Phys. Rev. B 76 144302

    [26]

    Brekhovskikh L M 1980 Wave in layered media (New York:Acadamic Press) pp7-9

    [27]

    John B, Fahnline, Gary H K 1991 J. Acoust. Soc. Am. 90 2808

    [28]

    Auld B A 1973 Acoustic Fields and Waves in Solids(Vol. 1) (New York:John Wiley & Sons) pp154-155

  • [1]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wen X S 2007 Acta Phys. Sin. 56 4700 (in Chinese) [赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森 2007 56 4700]

    [2]

    Ivansson S M 2012 J. Acoust. Soc. Am. 131 2622

    [3]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wang G, Wen X S 2006 Chin. Phys. Lett. 23 2132

    [4]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [5]

    Yang H B, Li Y, Zhao H G, Wen J, Wen X S 2014 Chin. Phs. B 23 104301

    [6]

    L L, Wen J H, Zhao H G, Meng H, Wen X S 2012 Acta Phys. Sin. 61 214301 (in Chinese) [吕林梅, 温激鸿, 赵宏刚, 孟浩, 温熙森 2012 61 214301]

    [7]

    House J R C 1991 Proc. I. O. A 13 166

    [8]

    Foin O, Berry A 2000 J. Acoust. Soc. Am. 107 2501

    [9]

    Berry A, Foin O 2001 J. Acoust. Soc. Am. 109 2704

    [10]

    Tao M, Fan J, Tang W 2008 Acta Acoust. 33 220 (in Chinese) [陶猛, 范军, 汤渭霖 2008 声学学报 33 220]

    [11]

    Tao M, Tang W L, Hua H X 2010 J. Vib. Acoust. 132 61001

    [12]

    Wang X Z, Zhang A M, Pang F Z, Yao X L 2014 J. Sound Vib. 333 228

    [13]

    Zhu D W, Huang X C, Wang Y, Xiao F, Hua H 2014 J. Mechanical Engineering Science (in press)

    [14]

    He S, He Y A, Zhang W Q 2014 Acta Acoust. 39 177 (in Chinese) [何世平, 何元安, 张文群 2014 声学学报 39 177]

    [15]

    Yang H B, Li Y, Zhao H G, Wen J H, Wen X S 2013 Acta Phys. Sin. 62 154301 (in Chinese) [杨海滨, 李岳, 赵宏刚, 温激鸿, 温熙森 2013 62 154301]

    [16]

    Ivansson S M 2014 J. Acoust. Soc. Am. 135 3338

    [17]

    Qiu C Y, Liu Z Y, Mei J, Ke M Z 2005 Solid State Commun. 134 765

    [18]

    Mei J, Liu Z Y, Qiu C Y 2005 J. Phys. :Condens. Matter 17 3735

    [19]

    Auld B A 1973 Acoustic Fields and Waves in Solids(Vol. 2) (New York:John Wiley & Sons) pp25-27

    [20]

    Arfken G B, Weber H J 2005 Mathematical Methods for Physicists (California:Elsevier Academic Press) pp687

    [21]

    Mei J, Liu Z Y, Shi J, Tian D C 2003 Phys. Rev. B 67 245107

    [22]

    Liu Z, Chan C T, Sheng P 2000 Phys. Rev. B 62 2446

    [23]

    Shen H J, Wen J H, Michael P P, Yu D L, Cai L, Wen X S 2013 Modelling Simul. Mater. Sci. Eng 21 65011

    [24]

    Shen H J, Michael P P, Wen J H, Yu D L, Cai L, Wen X S 2012 J. Phys. D:Appl. Phys. 45 285401

    [25]

    Fokin V, Ambati M, Sun C, Zhang X 2007 Phys. Rev. B 76 144302

    [26]

    Brekhovskikh L M 1980 Wave in layered media (New York:Acadamic Press) pp7-9

    [27]

    John B, Fahnline, Gary H K 1991 J. Acoust. Soc. Am. 90 2808

    [28]

    Auld B A 1973 Acoustic Fields and Waves in Solids(Vol. 1) (New York:John Wiley & Sons) pp154-155

  • [1] 荆晨轩, 时胜国, 杨德森, 张姜怡, 李松. 水下低频振荡涡流场声散射调制机理与特性研究.  , 2023, 72(1): 014302. doi: 10.7498/aps.72.20221748
    [2] 张先梅, 王成会, 郭建中, 莫润阳, 胡静, 陈时. 无界弹性介质球形液体空腔中的气泡的动力学.  , 2021, 70(21): 214305. doi: 10.7498/aps.70.20210869
    [3] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法.  , 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [4] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制.  , 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [5] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理.  , 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [6] 裴传康, 魏炳乾. 微小水滴撞击深水液池空腔运动的数值模拟及机理研究.  , 2018, 67(22): 224703. doi: 10.7498/aps.67.20181422
    [7] 陈聿, 刘垄, 黄忠, 屠林林, 詹鹏. 一维金属光栅嵌入磁性介质纳米结构下的横向磁光克尔效应的增强.  , 2016, 65(14): 147302. doi: 10.7498/aps.65.147302
    [8] 孙军平, 杨军, 林建恒, 蒋国健, 衣雪娟, 江鹏飞. 船舶水下辐射噪声信号理论模型及仿真.  , 2016, 65(12): 124301. doi: 10.7498/aps.65.124301
    [9] 杨阳, 李秀坤. 水下目标声散射信号的时频域盲抽取.  , 2016, 65(16): 164301. doi: 10.7498/aps.65.164301
    [10] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究.  , 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [11] 夏峙, 李秀坤. 水下目标弹性声散射信号分离.  , 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [12] 赵晨, 蒋式勤, 石明伟, 朱俊杰. 非均匀电磁介质中的等效源重构.  , 2014, 63(7): 078702. doi: 10.7498/aps.63.078702
    [13] 赵宏刚, 温激鸿, 杨海滨, 吕林梅, 温熙森. 一种含柱形空腔结构橡胶层的吸声机理及优化.  , 2014, 63(13): 134303. doi: 10.7498/aps.63.134303
    [14] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应.  , 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [15] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟.  , 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [16] 席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静. 中带电压法分离栅控横向pnp双极晶体管辐照感生缺.  , 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [17] 丁世敬, 葛德彪, 申宁. 复合介质等效电磁参数的数值研究.  , 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [18] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式.  , 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [19] 段文山, 洪学仁. 弱相对论等离子体横向扰动下的离子声孤波.  , 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [20] 罗正明. 空腔电离的电子迁移理论.  , 1980, 29(2): 205-213. doi: 10.7498/aps.29.205
计量
  • 文章访问数:  6410
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-28
  • 修回日期:  2015-02-17
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map