-
实验发现,飞秒激光微加工光纤微腔时,两个侧壁与纤芯轴向并不完全垂直, 刻蚀的非平行壁光纤微腔Mach-Zehnder干涉仪出现光程差随波长增大而线性减小、 微腔总损耗随波长增大呈递减变化等反常现象.对此,提出非平行壁光纤微腔Mach-Zehnder 干涉仪新模型并初步建立了分析理论,采用新模型及分析理论对新型微腔干涉仪特性进行了研究. 数值分析了微腔底角、深度等参数对谱峰波长位置的影响,理论研究了微腔的光波传输损耗、 吸收损耗、插入损耗、材料红外吸收损耗以及对干涉条纹对比度的影响, 理论分析与实验结果相符.实验获得水溶液干涉条纹对比度高达35 dB的非平行壁光纤微腔Mach-Zehnder干涉仪, 将新型光纤微腔干涉仪用于流体传感,其蔗糖水溶液折射率传感灵敏度高达-12937.31 nm/RIU.
-
关键词:
- 光纤Mach-Zehnder干涉仪 /
- 非平行壁光纤微腔 /
- 飞秒激光微加工 /
- 流体传感
It is found that two walls of fiber micro-cavity fabricated by femtosecond laser micromachining are not perpendicular to the fiber axis. Interference spectrum of the unparallel wall fiber micro-cavity Mach-Zehnder interferometer (MZI) shows abnormal characteristics, such as optical path difference decreasing linearly with wavelength increasing and the total loss decreasing with wavelength increasing. In this regard, we propose an unparalleled wall fiber micro-cavity MZI model and establish analytical theory. By using new models and theories, the new micro-cavity interferometer characteristics are studied, including that the effects of corner and depth on spectral peak wavelength are numerically analysed and transmission loss, absorption loss, insertion loss, infrared absorption loss of material as well as how they affect the interference fringe contrast are theoretically studied. Theoretical analyses and experimental results are in agreement with each other. For fluid sensing, a high-quality unparallel wall fiber micro-cavity MZI is fabricated. The interference fringe contrast of the fiber micro-cavity reaches up to 35 dB in water. Experimental results show that the sensor exhibits an ultrahigh RI sensitivities, as high as——12937.31 nm/RIU in aqueous solution of sucrose.-
Keywords:
- fiber Mach-Zehnder interferometer /
- unparallel wall fiber micro-cavity /
- femtosecond laser micromachining /
- fluid sensing
[1] Lim J H, Jang H S, Lee K S 2004 Opt. Lett. 29 346
[2] Shin W, Lee Y L, Yu B A, Noh Y C, Ahn T J 2010 Opt. Commun. 283 2097
[3] Fan Y, Zhu T, Shi L, Rao Y 2011 Appl. Opt. 50 4604
[4] Wei T, Lan X W, Xiao H 2009 IEEE Photon. Technol. Lett. 21 669
[5] Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110
[6] Li Y, Chen L, Harris E, Bao X 2010 IEEE Photon. Technol. Lett. 22 1750
[7] Monzon-Hernandez D, Martinez-Rios A, Torres-Gomez I, Salceda-Delgado D 2011 Opt. Lett. 36 4380
[8] Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732 (in Chinese) [侯建平, 宁韬, 盖双龙, 李鹏, 郝建平, 赵建林 2010 59 4732]
[9] Gouveia C, Jorge A S P, Baptista M J, Frazâo O 2011 IEEE Photon. Technol. Lett. 23 804
[10] Feng S C, Li H L, Xu O, Lu S H, Jian S S 2009 Communications and Photonics Conference and Exhibition (ACP) China Nov. 2-6, 2009
[11] Li Q, Lin C H, Tseng P Y, Lee H P 2005 Opt. Commun. 250 280
[12] Duan D, Rao Y, Xu L, Zhu T, Deng M, Wu D, Yao J 2011 Opt. Commun. 284 5311
[13] Wang Y, Yang M, Wang D N, Liu S, Lu P 2010 J. Opt. Soc. Am. B 27 370
[14] Jiang L, Zhao L, Jiang L, Wang S, Yang J, Xiao H 2011 Opt. Express 19 17591
[15] Zhang W G, Liu Z L, Yin L M 2011 Acta Optica Sinica 31 0706007-1 (in Chinese) [张伟刚, 刘卓琳, 殷丽梅 2011 光学学报 31 0706007-1]
[16] Younkin R, Carey E J, Mazur E, Levinson A J, Friend M C 2003 Appl. Phys. 93 2626
[17] Peng Y, Wen Y, Zhang D, Luo S, Chen L, Zhu Y 2011 Appl. Opt. 50 4765
[18] Shi S X, Zhang H X, Liu J S 2006 Physical Opt. and Appl. Opt. (Xi'an: University of Electronic Science and Technology Press) p289 (in Chinese) [石顺祥, 张海兴, 刘劲松 2006 物理光学与应用光学 (西安:电子科技大学出版) 第289页]
[19] Ding Z K, Xu J S, Song N 2009 Information Technol. 7 66 (in Chinese) [丁兆昆, 徐俊山, 宋宁 2009 信息技术 7 66]
[20] Marcuse D 1977 Bell Syst. Tech. J. 56 70
-
[1] Lim J H, Jang H S, Lee K S 2004 Opt. Lett. 29 346
[2] Shin W, Lee Y L, Yu B A, Noh Y C, Ahn T J 2010 Opt. Commun. 283 2097
[3] Fan Y, Zhu T, Shi L, Rao Y 2011 Appl. Opt. 50 4604
[4] Wei T, Lan X W, Xiao H 2009 IEEE Photon. Technol. Lett. 21 669
[5] Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110
[6] Li Y, Chen L, Harris E, Bao X 2010 IEEE Photon. Technol. Lett. 22 1750
[7] Monzon-Hernandez D, Martinez-Rios A, Torres-Gomez I, Salceda-Delgado D 2011 Opt. Lett. 36 4380
[8] Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732 (in Chinese) [侯建平, 宁韬, 盖双龙, 李鹏, 郝建平, 赵建林 2010 59 4732]
[9] Gouveia C, Jorge A S P, Baptista M J, Frazâo O 2011 IEEE Photon. Technol. Lett. 23 804
[10] Feng S C, Li H L, Xu O, Lu S H, Jian S S 2009 Communications and Photonics Conference and Exhibition (ACP) China Nov. 2-6, 2009
[11] Li Q, Lin C H, Tseng P Y, Lee H P 2005 Opt. Commun. 250 280
[12] Duan D, Rao Y, Xu L, Zhu T, Deng M, Wu D, Yao J 2011 Opt. Commun. 284 5311
[13] Wang Y, Yang M, Wang D N, Liu S, Lu P 2010 J. Opt. Soc. Am. B 27 370
[14] Jiang L, Zhao L, Jiang L, Wang S, Yang J, Xiao H 2011 Opt. Express 19 17591
[15] Zhang W G, Liu Z L, Yin L M 2011 Acta Optica Sinica 31 0706007-1 (in Chinese) [张伟刚, 刘卓琳, 殷丽梅 2011 光学学报 31 0706007-1]
[16] Younkin R, Carey E J, Mazur E, Levinson A J, Friend M C 2003 Appl. Phys. 93 2626
[17] Peng Y, Wen Y, Zhang D, Luo S, Chen L, Zhu Y 2011 Appl. Opt. 50 4765
[18] Shi S X, Zhang H X, Liu J S 2006 Physical Opt. and Appl. Opt. (Xi'an: University of Electronic Science and Technology Press) p289 (in Chinese) [石顺祥, 张海兴, 刘劲松 2006 物理光学与应用光学 (西安:电子科技大学出版) 第289页]
[19] Ding Z K, Xu J S, Song N 2009 Information Technol. 7 66 (in Chinese) [丁兆昆, 徐俊山, 宋宁 2009 信息技术 7 66]
[20] Marcuse D 1977 Bell Syst. Tech. J. 56 70
计量
- 文章访问数: 7194
- PDF下载量: 607
- 被引次数: 0