搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光刻蚀非平行壁光纤微腔Mach-Zehnder干涉仪特性及其流体传感研究

殷丽梅 张伟刚 薛晓琳 白志勇 魏石磊

引用本文:
Citation:

飞秒激光刻蚀非平行壁光纤微腔Mach-Zehnder干涉仪特性及其流体传感研究

殷丽梅, 张伟刚, 薛晓琳, 白志勇, 魏石磊

Study on characteristics and fluid sensing of unparallel wall fiber micro-cavity Mach-Zehnder interferometer fabricated by femtosecond laser micromachining

Yin Li-Mei, Zhang Wei-Gang, Xue Xiao-Lin, Bai Zhi-Yong, Wei Shi-Lei
PDF
导出引用
  • 实验发现,飞秒激光微加工光纤微腔时,两个侧壁与纤芯轴向并不完全垂直, 刻蚀的非平行壁光纤微腔Mach-Zehnder干涉仪出现光程差随波长增大而线性减小、 微腔总损耗随波长增大呈递减变化等反常现象.对此,提出非平行壁光纤微腔Mach-Zehnder 干涉仪新模型并初步建立了分析理论,采用新模型及分析理论对新型微腔干涉仪特性进行了研究. 数值分析了微腔底角、深度等参数对谱峰波长位置的影响,理论研究了微腔的光波传输损耗、 吸收损耗、插入损耗、材料红外吸收损耗以及对干涉条纹对比度的影响, 理论分析与实验结果相符.实验获得水溶液干涉条纹对比度高达35 dB的非平行壁光纤微腔Mach-Zehnder干涉仪, 将新型光纤微腔干涉仪用于流体传感,其蔗糖水溶液折射率传感灵敏度高达-12937.31 nm/RIU.
    It is found that two walls of fiber micro-cavity fabricated by femtosecond laser micromachining are not perpendicular to the fiber axis. Interference spectrum of the unparallel wall fiber micro-cavity Mach-Zehnder interferometer (MZI) shows abnormal characteristics, such as optical path difference decreasing linearly with wavelength increasing and the total loss decreasing with wavelength increasing. In this regard, we propose an unparalleled wall fiber micro-cavity MZI model and establish analytical theory. By using new models and theories, the new micro-cavity interferometer characteristics are studied, including that the effects of corner and depth on spectral peak wavelength are numerically analysed and transmission loss, absorption loss, insertion loss, infrared absorption loss of material as well as how they affect the interference fringe contrast are theoretically studied. Theoretical analyses and experimental results are in agreement with each other. For fluid sensing, a high-quality unparallel wall fiber micro-cavity MZI is fabricated. The interference fringe contrast of the fiber micro-cavity reaches up to 35 dB in water. Experimental results show that the sensor exhibits an ultrahigh RI sensitivities, as high as——12937.31 nm/RIU in aqueous solution of sucrose.
    • 基金项目: 国家自然科学基金(批准号: 10974100, 10674075, 60577018);天津市应用基础与前沿技术研究计划重点项目(批准号: 10JCZDJC24300) 和光学信息技术教育部重点实验室开放课题基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974100, 10674075, 60577018), the Application of Basic Research and Frontier technology Research Key Projects of Tianjin (Grant No. 10JCZDJC24300), and the Key Laboratory of Optical Information Technology, Ministry of Education.
    [1]

    Lim J H, Jang H S, Lee K S 2004 Opt. Lett. 29 346

    [2]

    Shin W, Lee Y L, Yu B A, Noh Y C, Ahn T J 2010 Opt. Commun. 283 2097

    [3]

    Fan Y, Zhu T, Shi L, Rao Y 2011 Appl. Opt. 50 4604

    [4]

    Wei T, Lan X W, Xiao H 2009 IEEE Photon. Technol. Lett. 21 669

    [5]

    Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110

    [6]

    Li Y, Chen L, Harris E, Bao X 2010 IEEE Photon. Technol. Lett. 22 1750

    [7]

    Monzon-Hernandez D, Martinez-Rios A, Torres-Gomez I, Salceda-Delgado D 2011 Opt. Lett. 36 4380

    [8]

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732 (in Chinese) [侯建平, 宁韬, 盖双龙, 李鹏, 郝建平, 赵建林 2010 59 4732]

    [9]

    Gouveia C, Jorge A S P, Baptista M J, Frazâo O 2011 IEEE Photon. Technol. Lett. 23 804

    [10]

    Feng S C, Li H L, Xu O, Lu S H, Jian S S 2009 Communications and Photonics Conference and Exhibition (ACP) China Nov. 2-6, 2009

    [11]

    Li Q, Lin C H, Tseng P Y, Lee H P 2005 Opt. Commun. 250 280

    [12]

    Duan D, Rao Y, Xu L, Zhu T, Deng M, Wu D, Yao J 2011 Opt. Commun. 284 5311

    [13]

    Wang Y, Yang M, Wang D N, Liu S, Lu P 2010 J. Opt. Soc. Am. B 27 370

    [14]

    Jiang L, Zhao L, Jiang L, Wang S, Yang J, Xiao H 2011 Opt. Express 19 17591

    [15]

    Zhang W G, Liu Z L, Yin L M 2011 Acta Optica Sinica 31 0706007-1 (in Chinese) [张伟刚, 刘卓琳, 殷丽梅 2011 光学学报 31 0706007-1]

    [16]

    Younkin R, Carey E J, Mazur E, Levinson A J, Friend M C 2003 Appl. Phys. 93 2626

    [17]

    Peng Y, Wen Y, Zhang D, Luo S, Chen L, Zhu Y 2011 Appl. Opt. 50 4765

    [18]

    Shi S X, Zhang H X, Liu J S 2006 Physical Opt. and Appl. Opt. (Xi'an: University of Electronic Science and Technology Press) p289 (in Chinese) [石顺祥, 张海兴, 刘劲松 2006 物理光学与应用光学 (西安:电子科技大学出版) 第289页]

    [19]

    Ding Z K, Xu J S, Song N 2009 Information Technol. 7 66 (in Chinese) [丁兆昆, 徐俊山, 宋宁 2009 信息技术 7 66]

    [20]

    Marcuse D 1977 Bell Syst. Tech. J. 56 70

  • [1]

    Lim J H, Jang H S, Lee K S 2004 Opt. Lett. 29 346

    [2]

    Shin W, Lee Y L, Yu B A, Noh Y C, Ahn T J 2010 Opt. Commun. 283 2097

    [3]

    Fan Y, Zhu T, Shi L, Rao Y 2011 Appl. Opt. 50 4604

    [4]

    Wei T, Lan X W, Xiao H 2009 IEEE Photon. Technol. Lett. 21 669

    [5]

    Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110

    [6]

    Li Y, Chen L, Harris E, Bao X 2010 IEEE Photon. Technol. Lett. 22 1750

    [7]

    Monzon-Hernandez D, Martinez-Rios A, Torres-Gomez I, Salceda-Delgado D 2011 Opt. Lett. 36 4380

    [8]

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732 (in Chinese) [侯建平, 宁韬, 盖双龙, 李鹏, 郝建平, 赵建林 2010 59 4732]

    [9]

    Gouveia C, Jorge A S P, Baptista M J, Frazâo O 2011 IEEE Photon. Technol. Lett. 23 804

    [10]

    Feng S C, Li H L, Xu O, Lu S H, Jian S S 2009 Communications and Photonics Conference and Exhibition (ACP) China Nov. 2-6, 2009

    [11]

    Li Q, Lin C H, Tseng P Y, Lee H P 2005 Opt. Commun. 250 280

    [12]

    Duan D, Rao Y, Xu L, Zhu T, Deng M, Wu D, Yao J 2011 Opt. Commun. 284 5311

    [13]

    Wang Y, Yang M, Wang D N, Liu S, Lu P 2010 J. Opt. Soc. Am. B 27 370

    [14]

    Jiang L, Zhao L, Jiang L, Wang S, Yang J, Xiao H 2011 Opt. Express 19 17591

    [15]

    Zhang W G, Liu Z L, Yin L M 2011 Acta Optica Sinica 31 0706007-1 (in Chinese) [张伟刚, 刘卓琳, 殷丽梅 2011 光学学报 31 0706007-1]

    [16]

    Younkin R, Carey E J, Mazur E, Levinson A J, Friend M C 2003 Appl. Phys. 93 2626

    [17]

    Peng Y, Wen Y, Zhang D, Luo S, Chen L, Zhu Y 2011 Appl. Opt. 50 4765

    [18]

    Shi S X, Zhang H X, Liu J S 2006 Physical Opt. and Appl. Opt. (Xi'an: University of Electronic Science and Technology Press) p289 (in Chinese) [石顺祥, 张海兴, 刘劲松 2006 物理光学与应用光学 (西安:电子科技大学出版) 第289页]

    [19]

    Ding Z K, Xu J S, Song N 2009 Information Technol. 7 66 (in Chinese) [丁兆昆, 徐俊山, 宋宁 2009 信息技术 7 66]

    [20]

    Marcuse D 1977 Bell Syst. Tech. J. 56 70

  • [1] 石凉竹, 张萌, 储玉喜, 刘博文, 胡明列. 光纤飞秒激光五倍频产生206 nm深紫外激光.  , 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [2] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生.  , 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [3] 傅双双, 骆顺龙, 孙源. 相干与信息守恒及其在Mach-Zehnder干涉中的应用.  , 2019, 68(3): 030301. doi: 10.7498/aps.68.20181778
    [4] 程君妮. 基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器.  , 2018, 67(2): 024212. doi: 10.7498/aps.67.20171677
    [5] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器.  , 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [6] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器.  , 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [7] 王闵, 刘复飞, 周贤, 戴玉堂, 杨明红. 基于光纤微结构加工和敏感材料物理融合的光纤传感技术.  , 2017, 66(7): 070703. doi: 10.7498/aps.66.070703
    [8] 林圆圆, 姜有恩, 韦辉, 范薇, 李学春. 基于飞秒激光微加工的介质膜损伤修复研究.  , 2015, 64(15): 154207. doi: 10.7498/aps.64.154207
    [9] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术.  , 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [10] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量.  , 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [11] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器.  , 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [12] 李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭. 基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器.  , 2013, 62(21): 214209. doi: 10.7498/aps.62.214209
    [13] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料.  , 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [14] 曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初. 掺Er光纤飞秒激光器载波包络位相偏移的探测.  , 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [15] 刘桂媛, 滕树云, 程传福, 宋洪胜, 刘曼. 锥形镀膜光纤探针中飞秒激光脉冲的传输.  , 2009, 58(11): 7613-7620. doi: 10.7498/aps.58.7613
    [16] 庄须叶, 刘永顺, 王淑荣, 吴一辉, 张平. 基于微加工工艺的光纤消逝场传感器及其长度特性研究.  , 2009, 58(4): 2501-2506. doi: 10.7498/aps.58.2501
    [17] 商娅娜, 王 东, 闫智辉, 王文哲, 贾晓军, 彭堃墀. 利用非平衡光纤Mach-Zehnder干涉仪探测频率非简并纠缠态光场.  , 2008, 57(6): 3514-3518. doi: 10.7498/aps.57.3514
    [18] 吴 光, 周春源, 曾和平. 光纤Sagnac干涉仪中单光子干涉及路由控制.  , 2004, 53(3): 698-702. doi: 10.7498/aps.53.698
    [19] 舒学文, 黄德修, 邓桂华, 施 伟, 江 山. 基于单个光纤光栅的Sagnac干涉仪的理论与实验研究.  , 2000, 49(9): 1731-1735. doi: 10.7498/aps.49.1731
    [20] 激光干涉研究小组. 以巨脉冲红宝石激光为光源的Mach-Zehnder干涉仪应用于θ收缩等离子体的研究.  , 1974, 23(1): 1-16. doi: 10.7498/aps.23.1
计量
  • 文章访问数:  7194
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-10
  • 修回日期:  2012-02-27
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map