搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分散介质和温度对纳米二氧化硅胶体剪切增稠行为的影响

山磊 田煜 孟永钢 张向军

引用本文:
Citation:

分散介质和温度对纳米二氧化硅胶体剪切增稠行为的影响

山磊, 田煜, 孟永钢, 张向军

Influences of medium and temperature on the shear thickening behavior of nano fumed silica colloids

Shan Lei, Tian Yu, Meng Yong-Gang, Zhang Xiang-Jun
PDF
导出引用
  • 对分散介质和温度对纳米二氧化硅胶体剪切增稠行为的影响进行了系统研究. 用四种液体分散介质(乙二醇, 聚乙二醇400, 丙二醇, 聚丙二醇400)制备的纳米二氧化硅胶体表现出不同的连续剪切增稠或者跳变剪切增稠行为. 温度上升降低了分散介质的黏度, 进而降低了胶体的表观黏度. 剪切增稠的临界黏度与温度的关系符合“Arrhenius”公式的描述. 胶体黏度与分散介质黏度的比值用来归一化不同温度下的稳态剪切流变曲线. 在低剪切速率的剪切变稀阶段, 剪切变稀现象与分散介质黏度没有明显相关性, 而与分散介质的化学性质密切相关. 在高剪切速率的剪切增稠阶段, 分散介质黏度越高, 胶体剪切增稠现象越强烈.
    The influences of medium and temperature on the shear thickening behavior of silica colloids are investigated. The nano fumed silica colloids in four media (ethylene glycol, polyethylene glycol 400, propylene glycol, and polypropylene glycol 400) exhibit continuous or discontinuous shear thickening behaviors. With the increase of temperature, the medium viscosity decreases, thus the apparent viscosity of colloids decreases. The relationship between the critical viscosity of shear thickening and temperature is well described by the Arrhenius equation. The ratio of viscosity of colloids to medium visocosity is used to scale the steady-shear rheological curves of the colloids under various temperatures. In the shear thinning regime at low shear rate, the form of rheological curve is independent of medium viscosity but correlates with the chemical properties of dispersing medium. In the shear thickening regime at high shear rate, a higher medium viscosity results in stronger shear thickening behavior.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB707603)、国家自然科学基金(批准号: 51175281, 51323006, 51425502)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB707603), the National Natural Science Foundation of China (Grant Nos. 51175281, 51323006, 51425502).
    [1]

    Barnes H A, Hutton J F, Walters K 1989 An Introduction to Rheology (Amsterdam: Elsevier) pp115-130

    [2]

    Brown E, Jaeger H M 2011 Science 333 1230

    [3]

    Mewis J, Wagner N J 2012 Colloidal Suspension Rheology (New York: Cambridge University Press) pp252-274

    [4]

    Hoffman R L 1972 J. Rheol. 16 155

    [5]

    Barnes H A 1989 J. Rheol. 33 329

    [6]

    Wagner N J, Brady J F 2009 Phys. Today 62 27

    [7]

    Cheng X, Mccoy J H, Israelachvili J N, Cohen I 2011 Science 333 1276

    [8]

    Lootens D, van Damme H, Hémar Y, Hébraud P 2005 Phys. Rev. Lett. 95 268302

    [9]

    Maranzano B J, Wagner N J 2001 J. Chem. Phys. 114 10514

    [10]

    Brady J F, Bossis G 1985 J. Fluid Mech. 155 105

    [11]

    Seto R, Mari R, Morris J F, Denn M M 2013 Phys. Rev. Lett. 111 218301

    [12]

    Brown E, Jaeger H M 2012 J. Rheol. 56 875

    [13]

    Brown E, Jaeger H M 2014 Rep. Prog. Phys. 77 46602

    [14]

    Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 30 (in Chinese) [孙其诚, 金峰, 王光谦, 张国华 2010 59 30]

    [15]

    Lee Y S, Wetzel E D, Wagner N J 2003 J. Mater. Sci. 38 2825

    [16]

    Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103

    [17]

    Zhang X Z, Li W H, Gong X L 2008 Smart. Mater. Struct. 17 35027

    [18]

    Iyer S S, Vedad-Ghavami R, Lee H, Liger M, Kavehpour H P, Candler R N 2013 Appl. Phys. Lett. 102 251902

    [19]

    Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 184703 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 184703]

    [20]

    Zhang X Z, Li W H, Gong X L 2008 Smart. Mater. Struct. 17 15051

    [21]

    Shenoy S S, Wagner N J 2005 Rheol. Acta 44 360

    [22]

    Raghavan S R, Walls H J, Khan S A 2000 Langmuir 16 7920

    [23]

    Raghavan S R, Khan S A 1997 J. Colloid Interf. Sci. 185 57

    [24]

    Goodwin J W, Hughes R W 2008 Rheology for Chemists: An Introduction (Cambridge: Royal Society of Chemistry) pp70-71

    [25]

    Hoffman R L 1974 J. Colloid Interf. Sci. 46 491

    [26]

    Boersma W H, Laven J, Stein H N 1990 Aiche J. 36 321

    [27]

    Brown E, Jaeger H M 2009 Phys. Rev. Lett. 103 86001

    [28]

    Tian Y, Zhang M L, Jiang J L, Pesika N, Zeng H B, Israelachvili J, Meng Y G, Wen S Z 2011 Phys. Rev. E 83 011401

    [29]

    Negi A S, Osuji C O 2009 Rheol. Acta 48 871

    [30]

    Brady J F 1996 Curr. Opin. Colloid In. 1 472

    [31]

    Zhou Z, Hollingsworth J V, Hong S, Wei G, Shi Y, Lu X, Cheng H, Han C C 2014 Soft Matter 10 6286

  • [1]

    Barnes H A, Hutton J F, Walters K 1989 An Introduction to Rheology (Amsterdam: Elsevier) pp115-130

    [2]

    Brown E, Jaeger H M 2011 Science 333 1230

    [3]

    Mewis J, Wagner N J 2012 Colloidal Suspension Rheology (New York: Cambridge University Press) pp252-274

    [4]

    Hoffman R L 1972 J. Rheol. 16 155

    [5]

    Barnes H A 1989 J. Rheol. 33 329

    [6]

    Wagner N J, Brady J F 2009 Phys. Today 62 27

    [7]

    Cheng X, Mccoy J H, Israelachvili J N, Cohen I 2011 Science 333 1276

    [8]

    Lootens D, van Damme H, Hémar Y, Hébraud P 2005 Phys. Rev. Lett. 95 268302

    [9]

    Maranzano B J, Wagner N J 2001 J. Chem. Phys. 114 10514

    [10]

    Brady J F, Bossis G 1985 J. Fluid Mech. 155 105

    [11]

    Seto R, Mari R, Morris J F, Denn M M 2013 Phys. Rev. Lett. 111 218301

    [12]

    Brown E, Jaeger H M 2012 J. Rheol. 56 875

    [13]

    Brown E, Jaeger H M 2014 Rep. Prog. Phys. 77 46602

    [14]

    Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 30 (in Chinese) [孙其诚, 金峰, 王光谦, 张国华 2010 59 30]

    [15]

    Lee Y S, Wetzel E D, Wagner N J 2003 J. Mater. Sci. 38 2825

    [16]

    Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103

    [17]

    Zhang X Z, Li W H, Gong X L 2008 Smart. Mater. Struct. 17 35027

    [18]

    Iyer S S, Vedad-Ghavami R, Lee H, Liger M, Kavehpour H P, Candler R N 2013 Appl. Phys. Lett. 102 251902

    [19]

    Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 184703 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 184703]

    [20]

    Zhang X Z, Li W H, Gong X L 2008 Smart. Mater. Struct. 17 15051

    [21]

    Shenoy S S, Wagner N J 2005 Rheol. Acta 44 360

    [22]

    Raghavan S R, Walls H J, Khan S A 2000 Langmuir 16 7920

    [23]

    Raghavan S R, Khan S A 1997 J. Colloid Interf. Sci. 185 57

    [24]

    Goodwin J W, Hughes R W 2008 Rheology for Chemists: An Introduction (Cambridge: Royal Society of Chemistry) pp70-71

    [25]

    Hoffman R L 1974 J. Colloid Interf. Sci. 46 491

    [26]

    Boersma W H, Laven J, Stein H N 1990 Aiche J. 36 321

    [27]

    Brown E, Jaeger H M 2009 Phys. Rev. Lett. 103 86001

    [28]

    Tian Y, Zhang M L, Jiang J L, Pesika N, Zeng H B, Israelachvili J, Meng Y G, Wen S Z 2011 Phys. Rev. E 83 011401

    [29]

    Negi A S, Osuji C O 2009 Rheol. Acta 48 871

    [30]

    Brady J F 1996 Curr. Opin. Colloid In. 1 472

    [31]

    Zhou Z, Hollingsworth J V, Hong S, Wei G, Shi Y, Lu X, Cheng H, Han C C 2014 Soft Matter 10 6286

  • [1] 许鑫萌, 娄钦. 剪切增稠幂律流体中单气泡上升动力学行为的格子Boltzmann方法研究.  , 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [2] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究.  , 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [3] 刘东静, 周福, 陈帅阳, 胡志亮. 氮化镓/石墨烯/碳化硅异质界面热输运特性的分子动力学研究.  , 2023, 72(15): 157901. doi: 10.7498/aps.72.20230537
    [4] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究.  , 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
    [5] 陈琼, 薛春霞, 王勋. 基于温度效应的无限长压电圆杆纵波分析.  , 2021, 70(3): 035201. doi: 10.7498/aps.70.20200774
    [6] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究.  , 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [7] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究.  , 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [8] 胡雪兰, 罗阳, 赵若汐, 胡艳敏, 张艳峰, 宋庆功. NiAl中Ni空位对杂质C原子的多重俘获及温度效应的第一性原理研究.  , 2016, 65(20): 206101. doi: 10.7498/aps.65.206101
    [9] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟.  , 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [10] 郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平. 温度对超薄铜膜疲劳性能影响的分子动力学模拟.  , 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [11] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布.  , 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [12] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应.  , 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [13] 肖中银, 王廷云, 罗文芸, 王子华. 高能粒子辐照二氧化硅玻璃E′色心形成机理研究.  , 2008, 57(4): 2273-2277. doi: 10.7498/aps.57.2273
    [14] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应.  , 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [15] 王长顺, 潘 煦, Urisu Tsuneo. 同步辐射光激励的二氧化硅薄膜刻蚀研究.  , 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [16] 谌雄文, 贺达江, 吴绍全, 宋克慧. 嵌入平行量子点的非平衡介观环路的极化电流.  , 2006, 55(8): 4287-4291. doi: 10.7498/aps.55.4287
    [17] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数.  , 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [18] 刘晓东, 倪培根, 程丙英, 张道中. 可变晶格常数乙醇-二氧化硅胶质光子晶体中的Raman散射.  , 2004, 53(9): 3059-3064. doi: 10.7498/aps.53.3059
    [19] 徐 洲, 王秀喜, 梁海弋, 吴恒安. 纳米单晶与多晶铜薄膜力学行为的数值模拟研究.  , 2004, 53(11): 3637-3643. doi: 10.7498/aps.53.3637
    [20] 沈军, 王珏, 吴翔. 二氧化硅多孔介质气凝胶和干凝胶的分形结构研究.  , 1996, 45(9): 1501-1505. doi: 10.7498/aps.45.1501
计量
  • 文章访问数:  7539
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-01
  • 修回日期:  2014-10-17
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map