搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型介质结构的超传输电磁特性研究

王娟娟 黄志祥 方明 张亚光 吴先良

引用本文:
Citation:

一种新型介质结构的超传输电磁特性研究

王娟娟, 黄志祥, 方明, 张亚光, 吴先良

Study on the super transmission in a typical dielectric structure

Wang Juan-Juan, Huang Zhi-Xiang, Fang Ming, Zhang Ya-Guang, Wu Xian-Liang
PDF
导出引用
  • 光入射到不同折射率材料的分界面时会很自然地产生反射现象. 在很多的工业应用中, 例如太阳能电池, 衬底的引入会在其表面产生反射损耗. 至今为止, 人们提出很多方法用来克服这一问题, 比较常见的有介质涂层、表面纹理、绝热折射率匹配和散射等离激元纳米粒子. 本文利用二维周期排布的亚波长级硅纳米圆柱阵列来降低衬底表面的反射. 结合辅助微分方程和时域有限差分法对该结构的散射特性进行系统研究, 结果发现, 纳米圆柱粒子能够产生类似于在金属表面发生的超传输现象, 这种现象的发生基于介质衬底耦合Mie共振机理, 该机理能在整个紫外到近红外光谱范围内将能量耦合到衬底中, 从而降低衬底表面的反射; 同时当散射结构被放置在具有高光学态密度的高折射率衬底附近时, 会产生较强的前向散射, 也能有效的减少后向散射即反射的发生. 基于降低衬底表面反射这一目的而言, 我们设计的结构可为实际太阳能电池及光学天线的设计提供参考.
    Reflection is a natural phenomenon that occurs when light passes the interface between materials with different refractive index. In many applications, such as solar cells, introduction of a substrate will result in an increase in reflection. There are many ways to reduce the reflection from a substrate, which have been investigated so far, including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles etc. Here we present an entirely new concept to eliminate reflection from a silicon wafer, which makes use of much simpler method than the ones reported before, and can be applied to any high-index material. Finite-difference-time-domain (FDTD) method and auxiliary differential equations are used in this paper to simulate a new structure that can suppress the reflection of light from a silicon surface over a broad spectral range. A two-dimensional periodic array of subwavelength silicon nanocylinders is designed, which possesses a phenomenon strongly substrate-coupled to the Mie resonances, and which can produce an extraordinary transmission phenomenon similar to the metal surface plasmon that yields almost zero total reflectance over the entire spectral range from ultraviolet to near-infrared. This new antireflection concept relies on the strong forward scattering that occurs when a scattering structure is placed in close proximity to a high-index substrate with a high optical density of states. For a detailed description of the problem, we have carried out some simulations. From the results, one can see that although nano-pillar covers only 30% of the substrate surface area, it can reduce the reflection from the surface from 30% to under 10% at the Mie resonance. For the purpose of reducing reflection from the substrate, this new structure designed may provide a reference for the actual solar cells and optical antenna design.
    • 基金项目: 国家自然科学基金(批准号:61471001,61101064,51277001)、安徽省杰出青年基金(批准号:1108085J01)、教育部新世纪优秀人才基金(批准号:NCET-12-0596)、安徽省高校自然科学基金(批准号:KJ2011A002,KJ2011A242,KJ2012A013)和教育部博士点基金(批准号:20123401110009)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471001, 61101064, 51277001), the Science Fund for Distinguished Young Scholars of Anhui Province, China (Grant No. 1108085J01), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0596), the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant Nos. KJ2011A002, KJ2011A242, KJ2012A013), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123401110009).
    [1]

    Ding M, Xue H, Wu B, Sun B B, Liu Z, Huang Z X, Wu X L 2013 Acta Phys. Sin. 62 044218 (in Chinese) [丁敏, 薛辉, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良 2013 62 044218]

    [2]

    Zhang J C, Xiong L M, Fang M, He H B 2013 Chin. Phys. B 22 044201

    [3]

    He S X, Yu G J, Zhu Z Y 2012 International Conference on Solid State Device and Materials Los Angels, Elsevier, April 1-2, 2012 p854

    [4]

    Macleod H A 2001 Thin-Film Optical Filters (3rd) (Florida:CRC Press) p668

    [5]

    Lamers M W P E 2012 Prog. Photovolt 20 62

    [6]

    Southwell W H 1991 J. Opt. Soc. Am. 8 549

    [7]

    Liu W, Miroshnichenko A E, Neshev D N, Kivshar Y S 2012 ACS Nano. 6 5489

    [8]

    Pellegrini G, Mazzoldi P, Mattei G 2012 J. Phys. Chem. C 116 21536

    [9]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [10]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188

    [11]

    Spinelli P, Hebbink M, Waele R, Black L, Lenzmann F, Polman A 2011 Nano Lett. 11 1760

    [12]

    Atwater H A, Polman A 2010 Nat. Mater 9 205

    [13]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [14]

    Vernon K C, Funston A M, Novo C, Gómez D E, Mulvaney P, Davis T J 2010 Nano Lett. 10 2080

    [15]

    Chen H J, Ming T, Zhang S R, Jin Z, Yang B C, Wang J F 2011 ACS Nano 5 4865

    [16]

    Chen H J, Shao L, Ming T, Woo K C, Man Y C, Wang J F, Lin H Q 2011 ACS Nano. 5 6754

    [17]

    Wu Y, Nordlander P 2010 J. Phys. Chem. C 114 7302

    [18]

    Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S, Brongersma M L 2010 Nano Lett. 10 439

    [19]

    Ren X G, Huang Z X, Wu X L, Lu S L, Wang H, Wu L, Li S 2012 Comput. Phys. Commun. 183 1192

    [20]

    Wang H, Wu B, Huang Z X, Wu X L 2013 Comput. Phys. Commun. 185 862

    [21]

    Wang H, Huang Z X, Wu X L, Ren X G, Wu B 2014 Acta Phys. Sin. 63 070203 (in Chinese) [王辉, 黄志祥, 吴先良, 任信刚, 吴博 2014 63 070203]

    [22]

    Mie G 1908 Ann. Phys. 330 377

    [23]

    Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (Heppenheim:Wiley-VCH) p83

    [24]

    Deinega A, Valnev I, Potapkin B, Lozovik Y 2011 J. Opt. Am. A 28 770

    [25]

    Taflove A, Hagness S G 2000 Computational Electrodynamics:The Finite-Difference Time-domain Method (2rd) (London:Artech House Publishers) p235

    [26]

    Hu Q F, Xu H, Liu J, Zhuo H B, Chi L H, Jiang J, Yan Y H 2009 Comput. Eng. Sci 31 188 (in Chinese) [胡庆丰, 徐 涵, 刘 杰, 卓红斌, 迟利华, 蒋 杰, 晏益慧 2009 计算机工程与科学 31 188]

    [27]

    Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 61 194701]

    [28]

    Ginn J C, Brener I, Peters D W, Wendt J R, Stevens J O, Hines P F, Basilio L I, Warne L K 2012 Phys. Rev. Lett. 108 097402

    [29]

    Miroshnichenko A E, Kivshar Y S 2012 Nano Lett. 12 6459

    [30]

    Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I, Chichkov B N 2012 Nano Lett. 12 3749

    [31]

    García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz J J 2011 Opt. Express 19 4815

    [32]

    Huang Z, Koschny T, Soukoulis C M 2012 Phys. Rev. Lett. 108 187402

    [33]

    Rayleigh J W S 1907 Philos. Mag. 14 60

    [34]

    Kippenberg T J, Tchebotareva A L, Kalkman J, Polman A, Vahala K J 2009 Phys. Rev. Lett. 103 027

  • [1]

    Ding M, Xue H, Wu B, Sun B B, Liu Z, Huang Z X, Wu X L 2013 Acta Phys. Sin. 62 044218 (in Chinese) [丁敏, 薛辉, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良 2013 62 044218]

    [2]

    Zhang J C, Xiong L M, Fang M, He H B 2013 Chin. Phys. B 22 044201

    [3]

    He S X, Yu G J, Zhu Z Y 2012 International Conference on Solid State Device and Materials Los Angels, Elsevier, April 1-2, 2012 p854

    [4]

    Macleod H A 2001 Thin-Film Optical Filters (3rd) (Florida:CRC Press) p668

    [5]

    Lamers M W P E 2012 Prog. Photovolt 20 62

    [6]

    Southwell W H 1991 J. Opt. Soc. Am. 8 549

    [7]

    Liu W, Miroshnichenko A E, Neshev D N, Kivshar Y S 2012 ACS Nano. 6 5489

    [8]

    Pellegrini G, Mazzoldi P, Mattei G 2012 J. Phys. Chem. C 116 21536

    [9]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [10]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188

    [11]

    Spinelli P, Hebbink M, Waele R, Black L, Lenzmann F, Polman A 2011 Nano Lett. 11 1760

    [12]

    Atwater H A, Polman A 2010 Nat. Mater 9 205

    [13]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [14]

    Vernon K C, Funston A M, Novo C, Gómez D E, Mulvaney P, Davis T J 2010 Nano Lett. 10 2080

    [15]

    Chen H J, Ming T, Zhang S R, Jin Z, Yang B C, Wang J F 2011 ACS Nano 5 4865

    [16]

    Chen H J, Shao L, Ming T, Woo K C, Man Y C, Wang J F, Lin H Q 2011 ACS Nano. 5 6754

    [17]

    Wu Y, Nordlander P 2010 J. Phys. Chem. C 114 7302

    [18]

    Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S, Brongersma M L 2010 Nano Lett. 10 439

    [19]

    Ren X G, Huang Z X, Wu X L, Lu S L, Wang H, Wu L, Li S 2012 Comput. Phys. Commun. 183 1192

    [20]

    Wang H, Wu B, Huang Z X, Wu X L 2013 Comput. Phys. Commun. 185 862

    [21]

    Wang H, Huang Z X, Wu X L, Ren X G, Wu B 2014 Acta Phys. Sin. 63 070203 (in Chinese) [王辉, 黄志祥, 吴先良, 任信刚, 吴博 2014 63 070203]

    [22]

    Mie G 1908 Ann. Phys. 330 377

    [23]

    Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (Heppenheim:Wiley-VCH) p83

    [24]

    Deinega A, Valnev I, Potapkin B, Lozovik Y 2011 J. Opt. Am. A 28 770

    [25]

    Taflove A, Hagness S G 2000 Computational Electrodynamics:The Finite-Difference Time-domain Method (2rd) (London:Artech House Publishers) p235

    [26]

    Hu Q F, Xu H, Liu J, Zhuo H B, Chi L H, Jiang J, Yan Y H 2009 Comput. Eng. Sci 31 188 (in Chinese) [胡庆丰, 徐 涵, 刘 杰, 卓红斌, 迟利华, 蒋 杰, 晏益慧 2009 计算机工程与科学 31 188]

    [27]

    Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 61 194701]

    [28]

    Ginn J C, Brener I, Peters D W, Wendt J R, Stevens J O, Hines P F, Basilio L I, Warne L K 2012 Phys. Rev. Lett. 108 097402

    [29]

    Miroshnichenko A E, Kivshar Y S 2012 Nano Lett. 12 6459

    [30]

    Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I, Chichkov B N 2012 Nano Lett. 12 3749

    [31]

    García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz J J 2011 Opt. Express 19 4815

    [32]

    Huang Z, Koschny T, Soukoulis C M 2012 Phys. Rev. Lett. 108 187402

    [33]

    Rayleigh J W S 1907 Philos. Mag. 14 60

    [34]

    Kippenberg T J, Tchebotareva A L, Kalkman J, Polman A, Vahala K J 2009 Phys. Rev. Lett. 103 027

  • [1] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振.  , 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [2] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振.  , 2021, (): . doi: 10.7498/aps.70.20211629
    [3] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究.  , 2021, (): . doi: 10.7498/aps.70.20210855
    [4] 王浩然, 蓝君, 陈佳惠, 李义丰. 基于多腔型超构材料的声场增强效应.  , 2021, 70(15): 154301. doi: 10.7498/aps.70.20202172
    [5] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响.  , 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [6] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究.  , 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [7] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究.  , 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [8] 刘丹, 胡森, 肖明. 硅基光子晶体异质结的单向传输特性.  , 2017, 66(5): 054209. doi: 10.7498/aps.66.054209
    [9] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式.  , 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [10] 刘桂媛, 宋洪胜, 张宁玉, 程传福. 飞秒激光在锥形镀膜探针传输中相位奇异的研究.  , 2015, 64(2): 024203. doi: 10.7498/aps.64.024203
    [11] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析.  , 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [12] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究.  , 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [13] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析.  , 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [14] 鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥. 色散周期结构的辅助场时域有限差分法分析.  , 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [15] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究.  , 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [16] 吴婧, 王鸣. 胶体晶体微结构光纤传输特性研究.  , 2012, 61(6): 064215. doi: 10.7498/aps.61.064215
    [17] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究.  , 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [18] 刘桂媛, 滕树云, 程传福, 宋洪胜, 刘曼. 锥形镀膜光纤探针中飞秒激光脉冲的传输.  , 2009, 58(11): 7613-7620. doi: 10.7498/aps.58.7613
    [19] 吴振军, 王丽芳, 廖承林. 分析端接频变负载的多导体传输线FDTD新方法.  , 2009, 58(9): 6146-6151. doi: 10.7498/aps.58.6146
    [20] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙.  , 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
计量
  • 文章访问数:  6479
  • PDF下载量:  756
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-17
  • 修回日期:  2014-12-25
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map