搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高真空系统中GaAlAs光电阴极的重新铯化研究

张益军 甘卓欣 张瀚 黄帆 徐源 冯琤

引用本文:
Citation:

超高真空系统中GaAlAs光电阴极的重新铯化研究

张益军, 甘卓欣, 张瀚, 黄帆, 徐源, 冯琤

Recesiation of GaAlAs photocathodes in an ultrahigh vacuum system

Zhang Yi-Jun, Gan Zhuo-Xin, Zhang Han, Huang Fan, Xu Yuan, Feng Cheng
PDF
导出引用
  • 为了探索在超高真空系统中使用稳定性和重复性好的光电阴极,开展了金属有机化学气相沉积生长的反射式GaAlAs和GaAs光电阴极的激活实验和重新铯化实验,测试了Cs/O激活后和重新补Cs后的光谱响应曲线和光电流衰减曲线. 实验结果表明,在100 lx白光照射条件下,超高真空环境中的GaAlAs光电阴极在Cs/O激活后和重新补Cs激活后的光电流衰减寿命相比GaAs光电阴极更长,并且在多次补Cs激活后呈现较一致的蓝绿光响应能力和光电流衰减寿命,体现了GaAlAs光电阴极在真空系统中稳定性和可重复性使用方面具有的优越性,为海洋真空探测器件和真空电子源领域的研究提供了实验指导.
    To seek a photocathode with good stability and repeatability in an ultrahigh vacuum system, activation and recesiation experiments are carried out on reflection-mode GaAlAs and GaAs photocathodes grown by metalorganic chemical vapor deposition, and the spectral response curves and photocurrent decay curves are measured after Cs/O activation and recesiation. Experimental results show that the photocurrent decay lifetime for GaAlAs photocathode illuminated by white light with an intensity of 100 lx is longer than that for GaAs photocathode after Cs/O activation and recesiation under ultrahigh vacuum condition. Moreover, GaAlAs photocathode exhibits a coincident blue-green response capability and a photocurrent decay lifetime after multiple recesiations, reflecting the superiority in stability and repeatability for GaAlAs photocathode operating in the vacuum system, and may provide an experimental guidance for exploring marine vacuum detectors and vacuum electron sources.
    • 基金项目: 国家自然科学基金(批准号:61301023,61171042)和高等学校博士学科点专项科研基金(批准号:20133219120008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61301023, 61171042), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133219120008).
    [1]

    Martinelli R U, Fisher D E 1974 Proc. IEEE 62 1339

    [2]
    [3]

    Zhang Y J, Zou J J, Wang X H, Chang B K, Qian Y S, Zhang J J, Gao P 2011 Chin. Phys. B 20 048501

    [4]

    Cai Z P, Yang W Z, Tang W D, Hou X 2012 Acta Phys. Sin. 61 187901 (in Chinese)[蔡志鹏, 杨文正, 唐伟东, 侯洵 2012 61 187901]

    [5]
    [6]

    Chen X L, Zhao J, Chang B K, Yu X H, Hao G H, Xu Y, Cheng H C 2013 J. Appl. Phys. 113 213105

    [7]
    [8]
    [9]

    Chen X L, Zhao J, Chang B K, Xu Y, Zhang Y J, Jin M C, Hao G H 2013 Acta Phys. Sin. 62 037303 (in Chinese)[陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉 2013 62 037303]

    [10]

    Martinelli R U, Ettenberg M 1974 J. Appl. Phys. 45 3896

    [11]
    [12]
    [13]

    Nishitani T, Tabuchi M, Takeda Y, Suzuki Y, Motoki K, Meguro T 2009 Jpn. J. Appl. Phys. 48 06FF02

    [14]

    Zhang S, Benson S V, H-Garcia C 2011 Nucl. Instrum. Methods Phys. Res. A 631 22

    [15]
    [16]
    [17]

    Wada T, Nitta T, Nomura T, Miyao M, Hagino M 1990 Jpn. J. Appl. Phys. 29 2087

    [18]

    Calabrese R, Ciullo G, Guidi V, Lamanna G, Lenisa P, Maciga B, Tecchio L, Yang B 1994 Rev. Sci. Instrum. 65 343

    [19]
    [20]

    Durek D, Frommberger F, Reichelt T, Westermann M 1999 Appl. Surf. Sci. 143 319

    [21]
    [22]
    [23]

    Sinclair C K, Adderley P A, Dunham B M, Hansknecht J C, Hartmann P, Poelker M, Price J S, Rutt P M, Schneider W J, Steigerwald M 2007 Phys. Rev. ST Accel Beams 10 023501

    [24]
    [25]

    Zou J J, Chang B K, Yang Z, Qiao J L, Zeng Y P 2008 Appl. Phys. Lett. 92 172102

    [26]

    Mulhollan G A, Bierman J C 2010 J. Vac. Sci. Technol. B 28 899

    [27]
    [28]

    Kuriki M, Shonaka C, Iijima H, Kubo D, Okamoto H, Higaki H, Ito K, Yamamoto M, Konomi T, Okumi S, Kuwahara M, Nakanishi T 2011 Nucl. Instrum. Methods Phys. Res. A 637 587

    [29]
    [30]
    [31]

    Chanlek N, Herbert J D, Jones R M, Jones L B, Middleman K J, Militsyn B L 2014 J. Phys. D: Appl. Phys. 47 055110

    [32]
    [33]

    Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K, Shi F, Cheng H C 2010 J. Appl. Phys. 108 093108

    [34]

    Liu Z, Sun Y, Machuca F, Pianetta P, Spicer W E, Pease R F W 2003 J. Vac. Sci. Technol. B 21 1953

    [35]
    [36]
    [37]

    Ruan C J 2003 Chin. Phys. 12 483

    [38]
    [39]

    Fu X Q, Chang B K, Qian Y S, Zhang J J 2012 Chin. Phys.B 21 030601

    [40]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754

    [41]
    [42]

    Zou J J, Chang B K, Yang Z, Gao P, Qiao J L, Zeng Y P 2007 Acta Phys. Sin. 56 6109 (in Chinese)[邹继军, 常本康, 杨智, 高频, 乔建良, 曾一平 2007 56 6109]

    [43]
  • [1]

    Martinelli R U, Fisher D E 1974 Proc. IEEE 62 1339

    [2]
    [3]

    Zhang Y J, Zou J J, Wang X H, Chang B K, Qian Y S, Zhang J J, Gao P 2011 Chin. Phys. B 20 048501

    [4]

    Cai Z P, Yang W Z, Tang W D, Hou X 2012 Acta Phys. Sin. 61 187901 (in Chinese)[蔡志鹏, 杨文正, 唐伟东, 侯洵 2012 61 187901]

    [5]
    [6]

    Chen X L, Zhao J, Chang B K, Yu X H, Hao G H, Xu Y, Cheng H C 2013 J. Appl. Phys. 113 213105

    [7]
    [8]
    [9]

    Chen X L, Zhao J, Chang B K, Xu Y, Zhang Y J, Jin M C, Hao G H 2013 Acta Phys. Sin. 62 037303 (in Chinese)[陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉 2013 62 037303]

    [10]

    Martinelli R U, Ettenberg M 1974 J. Appl. Phys. 45 3896

    [11]
    [12]
    [13]

    Nishitani T, Tabuchi M, Takeda Y, Suzuki Y, Motoki K, Meguro T 2009 Jpn. J. Appl. Phys. 48 06FF02

    [14]

    Zhang S, Benson S V, H-Garcia C 2011 Nucl. Instrum. Methods Phys. Res. A 631 22

    [15]
    [16]
    [17]

    Wada T, Nitta T, Nomura T, Miyao M, Hagino M 1990 Jpn. J. Appl. Phys. 29 2087

    [18]

    Calabrese R, Ciullo G, Guidi V, Lamanna G, Lenisa P, Maciga B, Tecchio L, Yang B 1994 Rev. Sci. Instrum. 65 343

    [19]
    [20]

    Durek D, Frommberger F, Reichelt T, Westermann M 1999 Appl. Surf. Sci. 143 319

    [21]
    [22]
    [23]

    Sinclair C K, Adderley P A, Dunham B M, Hansknecht J C, Hartmann P, Poelker M, Price J S, Rutt P M, Schneider W J, Steigerwald M 2007 Phys. Rev. ST Accel Beams 10 023501

    [24]
    [25]

    Zou J J, Chang B K, Yang Z, Qiao J L, Zeng Y P 2008 Appl. Phys. Lett. 92 172102

    [26]

    Mulhollan G A, Bierman J C 2010 J. Vac. Sci. Technol. B 28 899

    [27]
    [28]

    Kuriki M, Shonaka C, Iijima H, Kubo D, Okamoto H, Higaki H, Ito K, Yamamoto M, Konomi T, Okumi S, Kuwahara M, Nakanishi T 2011 Nucl. Instrum. Methods Phys. Res. A 637 587

    [29]
    [30]
    [31]

    Chanlek N, Herbert J D, Jones R M, Jones L B, Middleman K J, Militsyn B L 2014 J. Phys. D: Appl. Phys. 47 055110

    [32]
    [33]

    Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K, Shi F, Cheng H C 2010 J. Appl. Phys. 108 093108

    [34]

    Liu Z, Sun Y, Machuca F, Pianetta P, Spicer W E, Pease R F W 2003 J. Vac. Sci. Technol. B 21 1953

    [35]
    [36]
    [37]

    Ruan C J 2003 Chin. Phys. 12 483

    [38]
    [39]

    Fu X Q, Chang B K, Qian Y S, Zhang J J 2012 Chin. Phys.B 21 030601

    [40]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754

    [41]
    [42]

    Zou J J, Chang B K, Yang Z, Gao P, Qiao J L, Zeng Y P 2007 Acta Phys. Sin. 56 6109 (in Chinese)[邹继军, 常本康, 杨智, 高频, 乔建良, 曾一平 2007 56 6109]

    [43]
  • [1] 王东智, 张益军, 李诗曼, 童泽昊, 唐嵩, 石峰, 焦岗成, 程宏昌, 富容国, 钱芸生, 曾玉刚. 532 nm响应增强的AlGaAs光电阴极.  , 2024, 73(11): 118503. doi: 10.7498/aps.73.20240253
    [2] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究.  , 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [3] 王傲霜, 肖清泉, 陈豪, 何安娜, 秦铭哲, 谢泉. Mg2Si/Si雪崩光电二极管的设计与模拟.  , 2021, 70(10): 108501. doi: 10.7498/aps.70.20201923
    [4] 赵静, 余辉龙, 刘伟伟, 郭婧. 砷化镓光电阴极光谱响应与吸收率关系分析.  , 2017, 66(22): 227801. doi: 10.7498/aps.66.227801
    [5] 刘昶时, 刘文莉. 由阴、阳极电压及入射光强及频率确定光电流.  , 2013, 62(2): 028401. doi: 10.7498/aps.62.028401
    [6] 陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉. 指数掺杂反射式GaAlAs和GaAs光电阴极比较研究.  , 2013, 62(3): 037303. doi: 10.7498/aps.62.037303
    [7] 李博, 邵剑峰. 瞬态光电流对有机薄膜光伏器件中肖特基接触的研究.  , 2012, 61(7): 077301. doi: 10.7498/aps.61.077301
    [8] 王晓晖, 常本康, 钱芸生, 高频, 张益军, 乔建良, 杜晓晴. 透射式负电子亲和势GaN光电阴极的光谱响应研究.  , 2011, 60(5): 057902. doi: 10.7498/aps.60.057902
    [9] 乔建良, 常本康, 钱芸生, 高频, 王晓晖, 徐源. 负电子亲和势GaN真空面电子源研究进展.  , 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [10] 刘文宝, 赵德刚, 江德生, 刘宗顺, 朱建军, 张书明, 杨辉. 高阻氮化镓外延层的异常光吸收.  , 2010, 59(11): 8048-8051. doi: 10.7498/aps.59.8048
    [11] 乔建良, 常本康, 钱芸生, 杜晓晴, 张益军, 高频, 王晓晖, 郭向阳, 牛军, 高有堂. 负电子亲和势GaN光电阴极光谱响应特性研究.  , 2010, 59(5): 3577-3582. doi: 10.7498/aps.59.3577
    [12] 胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹. GaInP/GaAs/Ge三结太阳电池的电子辐照损伤效应.  , 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [13] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究.  , 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [14] 徐向晏, 叶振华, 李志锋, 陆 卫. 中波HgCdTe双色红外探测器优化模拟计算.  , 2007, 56(5): 2882-2889. doi: 10.7498/aps.56.2882
    [15] 刘鲁宁, 寿 倩, 雷 亮, 林春梅, 赖天树, 文锦辉, 林位株. 半导体中相干控制光电流对光场的偏振依赖性.  , 2005, 54(4): 1863-1867. doi: 10.7498/aps.54.1863
    [16] 杨文正, 侯洵, 陈烽, 杨青. BRD96N光调制吸收增强现象的实验研究.  , 2004, 53(1): 296-300. doi: 10.7498/aps.53.296
    [17] 魏光普. 非晶硅太阳电池的X射线辐照效应及其低能域光电流光谱观测.  , 1992, 41(3): 485-490. doi: 10.7498/aps.41.485
    [18] 张连芳, 赵文正, 尚仁成, 潘力, 王世亮, 文克玲, 陈瓞延. 用脉冲电场光电流光谱研究Ne原子的自电离态.  , 1990, 39(12): 1870-1876. doi: 10.7498/aps.39.1870
    [19] 吴全德. 银氧铯光电阴极中银胶粒的作用.  , 1979, 28(5): 1-9. doi: 10.7498/aps.28.1-2
    [20] 吴全德. 银氧铯光电阴极的长波光谱响应和固溶小胶粒.  , 1979, 28(5): 10-23. doi: 10.7498/aps.28.10
计量
  • 文章访问数:  5319
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-01
  • 修回日期:  2014-05-12
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map