-
利用容性表面与感性表面之间的耦合机理能够制备微型化频率选择表面(MEFSS),周期单元尺寸将不受工作波长限制.为了提高MEFSS角度与极化的稳定性,展宽MEFSS的-3 dB带宽,文章结合传统频率选择表面Y形单元,利用Y图形构造容性表面的贴片单元与感性表面的网栅单元且以正三角形栅格拓展周期单元,采用矢量模匹配法对MEFSS栅格排布及其他结构参数变化进行精确计算.通过镀膜与光刻技术在0.15 mm厚聚酰亚胺膜两侧制备容性表面、感性表面并利用自由空间法测试.计算与实验结果均表明,采用正三角形栅格排布的MEFSS,-3 dB带宽达到7.6 GHz,不同极化下60扫描时中心频点稳定在f0,为MEFSS应用于曲面天线罩时提供理论与实验参考依据.We propose a miniaturized-element frequency selective surface (MEFSS) by using the coupling mechanisms between capacitive surface and inductive surface, so the uint cell size will not be restricted by wavelength. In order to improve resonance stability performance with respect to different polarizations and incidence angles, according to the traditional FSS Y element, we create periodic elements of capacitive surface and inductive surface with Y shape and Y element array is in the form of equilateral triangle, The grid array and the effects of the parameteristics of Y loop element on the frequency response characteristics of MEFSS are calculated using the modal matching method. With filming technology and lithography, the corresponding capacitive surface and inductive surface between polyimide are produced and a prototype MEFFSS using freedom space method is examined. Both simulated and measured results obtained show that the MEFFSS constructed by using equilateral triangle Y element array has much better f0 resonance stability performance with respect to different polarizations and 60 incidence angles, and the -3 dB bandwidth reaches up to 7.6 GHz. We present a theoretical and experimental reference of MEFSS for the applications in large-angle incidence curved streamlined radome.
-
Keywords:
- radome /
- miniaturized elements frequency selective surfaces /
- capacitive surfaces /
- inductive surfaces
[1] Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys.Sin. 58 0505(in Chinese)[贾宏燕、高劲松、冯晓国、孙连春 2009 58 0505]
[2] Li X Q, Feng X G,Gao J S 2008 Acta Phys.Sin. 57 3193(in Chinese)[李小秋、冯晓国、高劲松 2008 57 3193]
[3] Gao J S,Wang S S, Feng X G, Xu N X,Zhao J L,Chen H 2010 Acta Phys.Sin. 59 7338(in Chinese)[高劲松、王珊珊、冯晓国、徐念喜、赵晶丽、陈 红 2010 59 7338]
[4] Munk B A 2000 Frequency Selective Surface: Theory and Design (New York: Wiley) p69-81
[5] Sarabandi K, Behdad N 2007 IEEE Trans. on Anten. and Propag. 55 1239
[6] Bayatpur F, Sarabandi K 2007 IEEE Anten. and Propag. Soc. Internat. Syppos. 15 3964
[7] Chiu C N, Chang K P 2009 IEEE Anten. and Wireless Propag. Lett. 8 1175
[8] Behdad N 2008 IEEE Radio and Wireless Symposium 22-24 347
[9] Bayatpur F, Sarabandi K 2009 IEEE Transact. on Micro. Theory and Tech. 57 1433
[10] Bayatpur F, Sarabandi K 2010 IEEE Transact. on Anten. and Propag. 58 1214
[11] Chen C C 1973 IEEE Trans. Microwave Theory Tech. 21 1
[12] Chen C C 1970 IEEE Trans. Microwave Theory Tech. 18 627
[13] Chi H C, Mittra R 1990 IEEE Transact. on Anten. and Propag. 38 40
-
[1] Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys.Sin. 58 0505(in Chinese)[贾宏燕、高劲松、冯晓国、孙连春 2009 58 0505]
[2] Li X Q, Feng X G,Gao J S 2008 Acta Phys.Sin. 57 3193(in Chinese)[李小秋、冯晓国、高劲松 2008 57 3193]
[3] Gao J S,Wang S S, Feng X G, Xu N X,Zhao J L,Chen H 2010 Acta Phys.Sin. 59 7338(in Chinese)[高劲松、王珊珊、冯晓国、徐念喜、赵晶丽、陈 红 2010 59 7338]
[4] Munk B A 2000 Frequency Selective Surface: Theory and Design (New York: Wiley) p69-81
[5] Sarabandi K, Behdad N 2007 IEEE Trans. on Anten. and Propag. 55 1239
[6] Bayatpur F, Sarabandi K 2007 IEEE Anten. and Propag. Soc. Internat. Syppos. 15 3964
[7] Chiu C N, Chang K P 2009 IEEE Anten. and Wireless Propag. Lett. 8 1175
[8] Behdad N 2008 IEEE Radio and Wireless Symposium 22-24 347
[9] Bayatpur F, Sarabandi K 2009 IEEE Transact. on Micro. Theory and Tech. 57 1433
[10] Bayatpur F, Sarabandi K 2010 IEEE Transact. on Anten. and Propag. 58 1214
[11] Chen C C 1973 IEEE Trans. Microwave Theory Tech. 21 1
[12] Chen C C 1970 IEEE Trans. Microwave Theory Tech. 18 627
[13] Chi H C, Mittra R 1990 IEEE Transact. on Anten. and Propag. 38 40
计量
- 文章访问数: 9906
- PDF下载量: 904
- 被引次数: 0