-
纳米钛氧化物忆阻器有望成为新一代阻性存储器基本单元并应用于辐射环境中的航天器控制及数据存储系统. 辐射能量, 强度, 方向, 持续时间等要素发生改变均可能对钛氧化物忆阻器受到的辐射损伤构成影响, 然而, 目前尚无相关具体研究. 基于以蒙特卡洛方法为核心的SRIM仿真, 本文针对宇宙射线主体组成部分——质子及 α射线定量研究了各个辐射要素与钛氧化物忆阻器辐射损伤的关联, 依据器件实测数据研究了辐射要素与导通阻抗, 截止阻抗及氧空缺迁移率等忆阻器主要参数的关系, 进一步利用SPICE仿真讨论了辐射对杂质漂移与隧道势垒共存特性的影响, 从而为评估及降低钛氧化物忆阻器辐射损伤, 提高器件应用于辐射环境的可靠性提供依据.Nano titanium oxide memristor is expected to be the basic cell of a new generation of resistive memory and applied in the control and data storage systems of spacecrafts that work in a radiation environment. The changes of radiation key factors, such as energy, intensity, direction, and duration etc. probably have an influence on the radiation damage of the titanium oxide memristor. However, there has been no relatively detailed research of it. Based on the SRIM simulation, with the Monte Carlo method used as its core, the main part of cosmic rays——proton and alpha rays and the relevance between the key factors and radiation damage in titanium oxide memristor are quantitatively studied. According to the experimental data, the relations between key factors and R_{ON}, R_{OFF}, the mobility of oxygen vacancies are analyzed. We find that the mobility of oxygen vacancies increases abruptly when the ratio between oxygen vacancies and titanium oxide molecules is greater than 0.16. Moreover, compared with proton radiation, the alpha particle radiation going into the active region in titanium oxide memristor, especially at an oblique incidence angle may cause a greater damage to the device and should be strictly avoided, and the radiation damage increases as the intensity and duration of the radiation are raised. SPICE simulations are further utilized to show the influence of radiation on the characteristics of the coexistence of dopant drift and the tunnel barrier. We also find that the titanium oxide memristor device will gradually turn into a normal resistor with a low resistance and lose its charge-memory ability after persistent radiations. This work provides support for evaluating and reducing radiation damage for titanium oxide memristors, so as to improve the reliability of the device in radiation environment.
-
Keywords:
- titanium oxide memristor /
- cosmic rays /
- radiation damage /
- SRIM
[1] Chua L O 1971 IEEE Trans. Circ. Th. 18 507
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[3] Shen W C, Tseng Y H, Chih Y D, Lin C J 2011 IEEE Electron Device Lett. 32 1650
[4] Ho Y, Huang G M, Li P 2011 IEEE Trans. Circuits Syst. I, Reg. Papers 58 724
[5] Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M 2011 IEEE Trans. Nanotechnol. 10 1066
[6] Pershin Y V, fontaine S L, Ventra M D 2009 Phys. Rev. E 80 021926
[7] Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 237
[8] Sun J W, Shen Y, Yin Q, Xu C J 2013 Chaos 23 013140
[9] Buscarino A, Fortuna L, Frasca M, Gambuzza L V 2012 Chaos 22 023136
[10] Liu H J, Li Z W, Bu K, Sun Z L, Nie H S 2014 Chin. Phys. B 23 048401
[11] Wang F Z, Helian N, Wu S, Yang X, Guo Y, Lim G, Rashid M M 2012 J. Appl. Phys. 111 07E317
[12] Prodromakis T, Boon P P, Papavassiliou C, Toumazou C 2011 IEEE Trans. Electron Devices 58 3099
[13] Xia Q F, Pickett M D, Yang J J, Li X, Wu W, Ribeiro G M, Williams R S 2011 Adv. Funct. Mater. 21 2660
[14] Wang T S, Zhang R D, Guan Z, Ba K, Zu Y X 2014 Acta Phys. Sin. 63 178101 (in Chinese) [王天舒, 张瑞德, 关哲, 巴柯, 俎云霄 2014 63 178101]
[15] Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 63 128502]
[16] Vujisic M, Stankovic K, Marjanovic N, Osmokrovic P 2010 IEEE Trans. Nucl. Sci. 57 1798
[17] Tong W M, Yang J J, Kuekes P J, Stewart D R, Williams R S, DeIonno E, King E E, Witczak S C, Looper M D, Osborn J V 2010 IEEE Trans. Nucl. Sci. 57 1640
[18] Hughart D R, Lohn A J, Mickel P R, Dalton S M, Dodd P E, Shaneyfelt M R, Silva A I, Bielejec E, Vizkelethy G, Marshall M T, McLain M L, Marinella M J 2013 IEEE Trans. Nucl. Sci. 60 4512
[19] Cong Z C, Yu X F, Cui J W, Zheng Q W, Guo Q, Sun J, Wang B, Ma W Y, Ma L Y, Zhou H 2014 Acta Phys. Sin. 63 086101 (in Chinese) [丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航 2014 63 086101]
[20] Nadine G H, Hamadani B, Dunlap B, Suehle J, Richter C, Hacker C, Gundlach D 2009 IEEE Electron Device Lett. 30 706
[21] Torrezan A C, Strachan J P, Ribeiro G M, Williams R S 2011 Nanotechnology 22 485203
[22] Michelakis K, Prodromakis T, Toumazou C 2010 Micro & Nano Letters 5 91
[23] Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503
[24] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201
[25] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429
[26] Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508
[27] Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401
[28] Abdalla H, Pickett M D International Symposium on Circuits and Systems May 15-18, 2011 Rio de Janeiro, Brazil, p1832
[29] Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502
[30] Tian X B, Xu H 2014 Chin. Phys. B 23 068401
[31] Kim M H, Baek S B, Paik U 1998 Journal of the Korean Physical Society 32 1127
[32] Minnear W P, Bradt R C 1980 J. Amer. Ceramic Soc. 63 485
[33] Ju Y F, Wang M H, Wang Y L, Wang S H, Fu C F 2013 Advances in Condensed Matter Physics 2013 365475
-
[1] Chua L O 1971 IEEE Trans. Circ. Th. 18 507
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[3] Shen W C, Tseng Y H, Chih Y D, Lin C J 2011 IEEE Electron Device Lett. 32 1650
[4] Ho Y, Huang G M, Li P 2011 IEEE Trans. Circuits Syst. I, Reg. Papers 58 724
[5] Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M 2011 IEEE Trans. Nanotechnol. 10 1066
[6] Pershin Y V, fontaine S L, Ventra M D 2009 Phys. Rev. E 80 021926
[7] Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 237
[8] Sun J W, Shen Y, Yin Q, Xu C J 2013 Chaos 23 013140
[9] Buscarino A, Fortuna L, Frasca M, Gambuzza L V 2012 Chaos 22 023136
[10] Liu H J, Li Z W, Bu K, Sun Z L, Nie H S 2014 Chin. Phys. B 23 048401
[11] Wang F Z, Helian N, Wu S, Yang X, Guo Y, Lim G, Rashid M M 2012 J. Appl. Phys. 111 07E317
[12] Prodromakis T, Boon P P, Papavassiliou C, Toumazou C 2011 IEEE Trans. Electron Devices 58 3099
[13] Xia Q F, Pickett M D, Yang J J, Li X, Wu W, Ribeiro G M, Williams R S 2011 Adv. Funct. Mater. 21 2660
[14] Wang T S, Zhang R D, Guan Z, Ba K, Zu Y X 2014 Acta Phys. Sin. 63 178101 (in Chinese) [王天舒, 张瑞德, 关哲, 巴柯, 俎云霄 2014 63 178101]
[15] Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 63 128502]
[16] Vujisic M, Stankovic K, Marjanovic N, Osmokrovic P 2010 IEEE Trans. Nucl. Sci. 57 1798
[17] Tong W M, Yang J J, Kuekes P J, Stewart D R, Williams R S, DeIonno E, King E E, Witczak S C, Looper M D, Osborn J V 2010 IEEE Trans. Nucl. Sci. 57 1640
[18] Hughart D R, Lohn A J, Mickel P R, Dalton S M, Dodd P E, Shaneyfelt M R, Silva A I, Bielejec E, Vizkelethy G, Marshall M T, McLain M L, Marinella M J 2013 IEEE Trans. Nucl. Sci. 60 4512
[19] Cong Z C, Yu X F, Cui J W, Zheng Q W, Guo Q, Sun J, Wang B, Ma W Y, Ma L Y, Zhou H 2014 Acta Phys. Sin. 63 086101 (in Chinese) [丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航 2014 63 086101]
[20] Nadine G H, Hamadani B, Dunlap B, Suehle J, Richter C, Hacker C, Gundlach D 2009 IEEE Electron Device Lett. 30 706
[21] Torrezan A C, Strachan J P, Ribeiro G M, Williams R S 2011 Nanotechnology 22 485203
[22] Michelakis K, Prodromakis T, Toumazou C 2010 Micro & Nano Letters 5 91
[23] Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503
[24] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201
[25] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429
[26] Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508
[27] Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401
[28] Abdalla H, Pickett M D International Symposium on Circuits and Systems May 15-18, 2011 Rio de Janeiro, Brazil, p1832
[29] Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502
[30] Tian X B, Xu H 2014 Chin. Phys. B 23 068401
[31] Kim M H, Baek S B, Paik U 1998 Journal of the Korean Physical Society 32 1127
[32] Minnear W P, Bradt R C 1980 J. Amer. Ceramic Soc. 63 485
[33] Ju Y F, Wang M H, Wang Y L, Wang S H, Fu C F 2013 Advances in Condensed Matter Physics 2013 365475
计量
- 文章访问数: 5923
- PDF下载量: 421
- 被引次数: 0