-
用345 keV的Kr15+和340 keV的Kr17+离子以45角入射n型GaAs单晶(100)面,测量了表面形貌的变化和发射的375500 nm GaⅠ和Kr Ⅱ的特征光谱线. Krq+(q=15,17)离子轰击后表面形貌的变化主要取决于入射离子的电荷态q. 离子沉积到靶表面的能量引起Ga原子激发,其辐射光谱为GaⅠ 403.2 nm和GaⅠ 417.0 nm. 入射离子中性化过程中俘获GaAs导带电子形成高激发态原子,通过级联退激填充3p,4d等空穴,P壳层电子跃迁发射谱线为Kr Ⅱ 410.0 nm,Kr Ⅱ 430.4 nm,Kr Ⅱ 434.0 nm和Kr Ⅱ 486.0 nm,Kr Ⅱ 486.0 nm为较强谱线. 实验结果表明,入射离子与GaAs单晶相互作用发射的可见光产额与入射离子的电荷态密切相关,较高电荷态Kr17+离子入射产生的光辐射产额大约为Kr15+离子的两倍.We have investigated surface morphology and visible light emission from slow ions Kr15+, 17+ colliding with GaAs (100). The surface disorder of GaAs films mainly depends on the charge state of incident ions. The two spectral lines of target atom Ga belong to transitions of GaⅠ 4p 2P1/2o5s 2S1/2 at 403.2 nm and 4p 2P3/2o5s 2S1/2 at 417.0 nm. Light emissions of target species depend on the energy of the incident ions deposited on the target surface atoms. During the neutralization process, the four spectral lines of Kr+ respectively can be attributed to the transitions of Kr Ⅱ 4d 4F7/25p 2D5/2o at 410.0 nm, 5s 2P3/25p 4S3/2o at 430.4 nm, 5p 4D3/2o4d 2D3/2 at 434.0 nm and Kr Ⅱ 4d 4D1/25p 2S1/2o at 486.0 nm. They are induced by cascade de-excitation after many electrons of the conductions band of the solid surface captured in highly excited states of the incident ion. Intensities of these six spectral lines from incident ions Kr17+ are obviously larger than Kr15+'s.
-
Keywords:
- surface morphology /
- spectrum /
- highly excited states
[1] Memon A, Fakhro S Q 1987 Int. J. IR Millim Waves 8 1391
[2] Wang G H 1988 Physics of particle interaction with solids (Beijing: Scientific Press) (in Chinese) [王广厚 1988 粒子同固体相互作用物理学(北京:科学出版社)]
[3] Look D C 1987 J. Electrochem Soc. 134 2527
[4] Williams J S 1998 Mater. Sci. Eng. 253 8
[5] Pearton S J, Poate J M, Sette F, Gibson J M, Jacobson D C, Williams J S 1987 Nucl. Instrum. Meth. B 19 369
[6] Pearton S J 1991 Solid State Phenomena 1-2 247
[7] Sharma B L 1989 Def. Sci. J. 39 353
[8] Winter H, Auth C, Schuch R, Beebe E 1993 Phys. Rev. Lett. 71 1939
[9] Burgdorfer J, Morgenstern R, Niehaus A 1986 J. Phys. B: At. Mol. Phys. 19 L507
[10] Burgdorfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674
[11] Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Progress in Surface Science 61 23
[12] Burgdorfer J, Reinhold C, Hagg L Meyer F 1996 Aust. J. Phys. 49 527
[13] Briand J P, Giardino G, Borsoni G, Le Roux V, Bechu N, Dreuil S, Tuske O, Machicoane G 2000 Review of Scientific Instruments 71 627
[14] Grether M, Niemann D, Spieler A, Stolterfoht N 1997 Phys. Rev. A 56 3794
[15] Thomaschewski J, BleckNeuhaus J, Grether M, Spieler A, Stolterfoht N 1998 Phys. Rev. A 57 3665
[16] Zhang X A, Xiao G Q, Wang W S, Mao R S 2002 Nucl. Phys. Rev. 19 342 (in Chinese) [张小安, 肖国青, 王武生, 毛瑞士 2002 原子核物理评论 19 342]
[17] Lee C S, Chang Y C, Ji T Y 1997 Nucl. Instrum. Meth. B 132 391
[18] Qayyum A, Akhtar M N, Riffat T 2005 Radiat Phys. Chem. 72 663
[19] Rajasekar P, Scott D, Materer N F 2006 Nucl. Instrum. Meth. B 245 411
[20] Cazalilla M A, Lorente N, Diez Muino R, Gauyacq J P, Teillet-Billy D, Echenique P M 1998 Phys. Rev. B 58 13991
[21] Yang Z H, Xu Q M, Guo Y P, Wu Y H, Song Z Y 2013 Chin. Phys. Lett. 30 013201
[22] Yang Z R, Zhang X A, Xu Q M, Yang Z H 2013 Acta Phys. Sin. 62 043401 (in Chinese) [杨兆锐, 张小安, 徐秋梅, 杨治虎 2013 62 043401]
[23] Yang Z H, Song Z Y, Cui Y, Zhang H Q, Ruan F F, Shao J X, Du J, Liu Y W, Zhou K X, Zhang X A, Shao C J, Lu R C, Yu D Y, Chen X M, Cai X H 2008 Acta Phys. Sin. 57 803 (in Chinese) [杨治虎, 宋张勇, 崔莹, 张红强, 阮芳芳, 邵健雄, 杜鹃, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红 2008 57 803]
[24] Bethe H A, Salpeter E E 1977 Quantum Mechanics of One- and Two-electron Atoms (New York Plenum Publishing Corporation)
[25] Zhang L Q, Zhang C H, Yang Y T, Yao C F, Sun Y M, Li B S, Zhao Z M, Song S J 2009 Acta Phys. Sin. 58 5578 (in Chinese) [张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建 2009 58 5578]
[26] Kucheyev S O, Williams J S, Jagadish C, Li G, Pearton S J 2000 Appl. Phys. Lett. 76 3899
[27] Yang Y T, Zhang C H, Sun Y M, Yao C F, Zhao Z M 2007 Nucl. Technol. 30 318 (in Chinese) [杨义涛, 张崇宏, 孙友梅, 姚存峰, 赵志明 2007 核技术 30 318]
[28] Zhang L Q, Zhang C H, Yang Y T, Yao C F, Li B S, Sun Y M, Song S J 2009 Chin. Phys. Lett. 26 036101
[29] Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2012 NIST Atomic Spectra Database (ver. 5.0) [Online] (Available: http: //physics.nist.gov/asd; Gaithersburg: National Institute of Standards and Technology)
[30] Machicoane G A, Schenkel T, Niedermayr T R, Newmann M W, Hamza A V, Barnes A V, McDonald J M, Tanis J A, Schneider D H 2002 Phys. Rev. A 65 042903
[31] Sigmund P 1969 Phys. Rev. 184 383
[32] Lee C S, Chang Y C, Chang Y H 1999 Nucl. Instrum. Meth. B 149 294
-
[1] Memon A, Fakhro S Q 1987 Int. J. IR Millim Waves 8 1391
[2] Wang G H 1988 Physics of particle interaction with solids (Beijing: Scientific Press) (in Chinese) [王广厚 1988 粒子同固体相互作用物理学(北京:科学出版社)]
[3] Look D C 1987 J. Electrochem Soc. 134 2527
[4] Williams J S 1998 Mater. Sci. Eng. 253 8
[5] Pearton S J, Poate J M, Sette F, Gibson J M, Jacobson D C, Williams J S 1987 Nucl. Instrum. Meth. B 19 369
[6] Pearton S J 1991 Solid State Phenomena 1-2 247
[7] Sharma B L 1989 Def. Sci. J. 39 353
[8] Winter H, Auth C, Schuch R, Beebe E 1993 Phys. Rev. Lett. 71 1939
[9] Burgdorfer J, Morgenstern R, Niehaus A 1986 J. Phys. B: At. Mol. Phys. 19 L507
[10] Burgdorfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674
[11] Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Progress in Surface Science 61 23
[12] Burgdorfer J, Reinhold C, Hagg L Meyer F 1996 Aust. J. Phys. 49 527
[13] Briand J P, Giardino G, Borsoni G, Le Roux V, Bechu N, Dreuil S, Tuske O, Machicoane G 2000 Review of Scientific Instruments 71 627
[14] Grether M, Niemann D, Spieler A, Stolterfoht N 1997 Phys. Rev. A 56 3794
[15] Thomaschewski J, BleckNeuhaus J, Grether M, Spieler A, Stolterfoht N 1998 Phys. Rev. A 57 3665
[16] Zhang X A, Xiao G Q, Wang W S, Mao R S 2002 Nucl. Phys. Rev. 19 342 (in Chinese) [张小安, 肖国青, 王武生, 毛瑞士 2002 原子核物理评论 19 342]
[17] Lee C S, Chang Y C, Ji T Y 1997 Nucl. Instrum. Meth. B 132 391
[18] Qayyum A, Akhtar M N, Riffat T 2005 Radiat Phys. Chem. 72 663
[19] Rajasekar P, Scott D, Materer N F 2006 Nucl. Instrum. Meth. B 245 411
[20] Cazalilla M A, Lorente N, Diez Muino R, Gauyacq J P, Teillet-Billy D, Echenique P M 1998 Phys. Rev. B 58 13991
[21] Yang Z H, Xu Q M, Guo Y P, Wu Y H, Song Z Y 2013 Chin. Phys. Lett. 30 013201
[22] Yang Z R, Zhang X A, Xu Q M, Yang Z H 2013 Acta Phys. Sin. 62 043401 (in Chinese) [杨兆锐, 张小安, 徐秋梅, 杨治虎 2013 62 043401]
[23] Yang Z H, Song Z Y, Cui Y, Zhang H Q, Ruan F F, Shao J X, Du J, Liu Y W, Zhou K X, Zhang X A, Shao C J, Lu R C, Yu D Y, Chen X M, Cai X H 2008 Acta Phys. Sin. 57 803 (in Chinese) [杨治虎, 宋张勇, 崔莹, 张红强, 阮芳芳, 邵健雄, 杜鹃, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红 2008 57 803]
[24] Bethe H A, Salpeter E E 1977 Quantum Mechanics of One- and Two-electron Atoms (New York Plenum Publishing Corporation)
[25] Zhang L Q, Zhang C H, Yang Y T, Yao C F, Sun Y M, Li B S, Zhao Z M, Song S J 2009 Acta Phys. Sin. 58 5578 (in Chinese) [张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建 2009 58 5578]
[26] Kucheyev S O, Williams J S, Jagadish C, Li G, Pearton S J 2000 Appl. Phys. Lett. 76 3899
[27] Yang Y T, Zhang C H, Sun Y M, Yao C F, Zhao Z M 2007 Nucl. Technol. 30 318 (in Chinese) [杨义涛, 张崇宏, 孙友梅, 姚存峰, 赵志明 2007 核技术 30 318]
[28] Zhang L Q, Zhang C H, Yang Y T, Yao C F, Li B S, Sun Y M, Song S J 2009 Chin. Phys. Lett. 26 036101
[29] Kramida A, Ralchenko Y, Reader J, NIST ASD Team 2012 NIST Atomic Spectra Database (ver. 5.0) [Online] (Available: http: //physics.nist.gov/asd; Gaithersburg: National Institute of Standards and Technology)
[30] Machicoane G A, Schenkel T, Niedermayr T R, Newmann M W, Hamza A V, Barnes A V, McDonald J M, Tanis J A, Schneider D H 2002 Phys. Rev. A 65 042903
[31] Sigmund P 1969 Phys. Rev. 184 383
[32] Lee C S, Chang Y C, Chang Y H 1999 Nucl. Instrum. Meth. B 149 294
计量
- 文章访问数: 6770
- PDF下载量: 424
- 被引次数: 0