-
基于修正的Rayleigh气泡脉动方程对水下等离子体声源放电产生的 强声冲击波的传播过程进行了分析; 利用Euler方程作为控制方程组, 建立了水下等离子体声源的聚束声场模型, 通过仿真计算获得的传播云图对冲击波负压的形成机理进行了直观的理论分析. 结果表明: 经过聚能反射罩反射汇聚得到的聚束波在反射稀疏波和水的惯性作用下, 聚束波周围水域产生了拉伸, 形成负压区, 如果拉伸力大于水的抗拉上限, 就会使得水中形成不连续现象, 即出现空化气泡; 此外聚能罩边缘处产生的衍射波进一步加剧了负压的产生, 边缘衍射波最终与拉伸波叠加, 使冲击波负压达到最大值; 通过对比仿真波形和实验波形, 从而验证和进一步揭示了冲击波负压的形成原因. 研究结果对认识水下冲击波的传播规律和进一步改进等离子体声源的设计具有指导意义.The propagation process of intense acoustic shock wave, generated by the discharge of underwater plasma sound source, is analyzed based on a modified Rayleigh model. The bunching sound field model of underwater plasma sound source is established by using the Euler equation as the control equations. The formation mechanism of the shock wave negative pressure is analyzed theoretically and intuitively through the sound field charts obtained by simulation. The results demonstrate that the water around the bunching wave will be stretched and form a zone of negative pressure with the combination of the rarefaction wave and the inertia of water. It will make the water form a discontinuous phenomenon if the stretching force is greater than the ultimate tensile strength of the water, the phenomenon of cavitation bubble will appear at this time. Besides that, negative pressure will be aggravated by the diffracted wave generated at the edge of the energy-gathered reflector, and the shock wave negative pressure will reach a maximum value by the superimposition of the edge diffraction wave and the stretch wave. The reasons for the formation of the shock wave negative pressure is testified and revealed further by comparing the waveforms of simulation and experiment. The study results provide a theoretical guide for understanding the propagation law of underwater shock wave and further improving the design of the underwater plasma sound source.
-
Keywords:
- plasma sound source /
- shock wave negative pressure /
- bunching sound field /
- bubble
[1] Li N, Chen J F, Huang J G, Fang M 2009 Appl. Acoust. 29 1 (in Chinese) [李宁, 陈建峰, 黄建国, 方明 2009 应用声学 29 1]
[2] Wang Y B, Wang S W, Zeng X W 2012 Chin. Phys. B 21 055203
[3] Yan P, Sun Y H, Zhou Y X, Jin M J 2004 CEIDP’04 Boulder Colorado, USA, October 17-20, 2004 p596
[4] Qiao Z L, Zhang Q F, Lei K Z 2011 Torpedo Technol. 19 187 (in Chinese) [乔子椋, 张群飞, 雷开卓 2011 鱼雷技术 19 187]
[5] Lei K Z, Huang J G, Zhang Q F 2010 Torpedo Technol. 18 161 (in Chinese) [雷开卓, 黄建国, 张群飞 2010 鱼雷技术 18 161]
[6] Lukeš P, Šunka P, Hoffer P, Stelmashuk V, Beneš J, Poučková P, Zadinová M, Zeman J 2012 Plasma for Bio-Decontamination, Medicine and Food Security (Dordrecht: Springer) p403
[7] Qian Z W, Xiao L 2008 Chin. Phys. B 17 3785
[8] Qian Z W, Xiao L 2003 Chin. Phys. Lett. 20 80
[9] Zhang X Y, Chen J Q, Zhang Y X, Wei C X 2011 J. Medical Biomecha. 26 540 (in Chinese) [张晓艳, 陈景秋, 张永祥, 韦春霞 2011 医用生物力学 26 540]
[10] Costanzo F A 2011 Struct. Dynam. 3 917
[11] Gu W B, Su Q L, Liu J Q, Zheng X P, Li D J, Sun B P 2004 Blasting 21 8 (in Chinese) [顾文彬, 苏青笠, 刘建青, 郑向平, 李丹俊, 孙宝平 2004 爆破 21 8]
[12] Zhang Z F, Zeng X W, Wang Y B, Cai Q Y 2012 J. National Univ. Defense Technol. 34 54 (in Chinese) [张振福, 曾新吾, 王一博, 蔡清裕 2012 国防科技大学学报 34 54]
[13] Zhang J, Zeng X W, Chen D, Zhang Z F 2012 Acta Phys. Sin. 61 184302 (in Chinese) [张军, 曾新吾, 陈聃, 张振福 2012 61 184302]
[14] Liu X L, Huang J G, Lei K Z 2012 Chin. High Technol. Lett. 22 552 (in Chinese) [刘小龙, 黄建国, 雷开卓 2012 高技术通讯 22 552]
[15] Li N, Huang J G, Lei K Z, Chen J F, Zhang Q F 2011 J. Electrost. 69 291
[16] Lu X P, Pan Y, Zhang H H 2002 Acta Phys. Sin. 51 1768 (in Chinese) [卢新培, 潘垣, 张寒虹 2002 51 1768]
[17] Ning J G, Wang C, Ma T B 2010 Explosion and Shock Dynamics (Beijing: National Defense Industry Press) p139 (in Chinese) [宁建国, 王成, 马天宝 2010 爆炸与冲击动力学(北京: 国防工业出版社) 第139页]
[18] Liu X L, Huang J G, Huang H 2011 International Conference on Coumputer Science and Network Technology Harbin, China, December 24-26, 2011 p1255
-
[1] Li N, Chen J F, Huang J G, Fang M 2009 Appl. Acoust. 29 1 (in Chinese) [李宁, 陈建峰, 黄建国, 方明 2009 应用声学 29 1]
[2] Wang Y B, Wang S W, Zeng X W 2012 Chin. Phys. B 21 055203
[3] Yan P, Sun Y H, Zhou Y X, Jin M J 2004 CEIDP’04 Boulder Colorado, USA, October 17-20, 2004 p596
[4] Qiao Z L, Zhang Q F, Lei K Z 2011 Torpedo Technol. 19 187 (in Chinese) [乔子椋, 张群飞, 雷开卓 2011 鱼雷技术 19 187]
[5] Lei K Z, Huang J G, Zhang Q F 2010 Torpedo Technol. 18 161 (in Chinese) [雷开卓, 黄建国, 张群飞 2010 鱼雷技术 18 161]
[6] Lukeš P, Šunka P, Hoffer P, Stelmashuk V, Beneš J, Poučková P, Zadinová M, Zeman J 2012 Plasma for Bio-Decontamination, Medicine and Food Security (Dordrecht: Springer) p403
[7] Qian Z W, Xiao L 2008 Chin. Phys. B 17 3785
[8] Qian Z W, Xiao L 2003 Chin. Phys. Lett. 20 80
[9] Zhang X Y, Chen J Q, Zhang Y X, Wei C X 2011 J. Medical Biomecha. 26 540 (in Chinese) [张晓艳, 陈景秋, 张永祥, 韦春霞 2011 医用生物力学 26 540]
[10] Costanzo F A 2011 Struct. Dynam. 3 917
[11] Gu W B, Su Q L, Liu J Q, Zheng X P, Li D J, Sun B P 2004 Blasting 21 8 (in Chinese) [顾文彬, 苏青笠, 刘建青, 郑向平, 李丹俊, 孙宝平 2004 爆破 21 8]
[12] Zhang Z F, Zeng X W, Wang Y B, Cai Q Y 2012 J. National Univ. Defense Technol. 34 54 (in Chinese) [张振福, 曾新吾, 王一博, 蔡清裕 2012 国防科技大学学报 34 54]
[13] Zhang J, Zeng X W, Chen D, Zhang Z F 2012 Acta Phys. Sin. 61 184302 (in Chinese) [张军, 曾新吾, 陈聃, 张振福 2012 61 184302]
[14] Liu X L, Huang J G, Lei K Z 2012 Chin. High Technol. Lett. 22 552 (in Chinese) [刘小龙, 黄建国, 雷开卓 2012 高技术通讯 22 552]
[15] Li N, Huang J G, Lei K Z, Chen J F, Zhang Q F 2011 J. Electrost. 69 291
[16] Lu X P, Pan Y, Zhang H H 2002 Acta Phys. Sin. 51 1768 (in Chinese) [卢新培, 潘垣, 张寒虹 2002 51 1768]
[17] Ning J G, Wang C, Ma T B 2010 Explosion and Shock Dynamics (Beijing: National Defense Industry Press) p139 (in Chinese) [宁建国, 王成, 马天宝 2010 爆炸与冲击动力学(北京: 国防工业出版社) 第139页]
[18] Liu X L, Huang J G, Huang H 2011 International Conference on Coumputer Science and Network Technology Harbin, China, December 24-26, 2011 p1255
计量
- 文章访问数: 7388
- PDF下载量: 966
- 被引次数: 0