-
采用金属有机化合物气相淀积法在(0001)取向的蓝宝石衬底上生长一层 大约20 nm厚的AlN缓冲层, 在缓冲层上生长大约2 μm厚、 晶体质量良好的AlxGa1-xN外延层, 通过深紫外光致发光法测量发光峰的能量Eg 判断外延层中铝含量的均匀性, 取样品均匀性良好的氮铝镓外延片进行卢瑟福背散射(RBS)实验, 通过两个高能离子束实验室分别进行RBS随机谱分析, 每个实验室测量六个样品, 由分析软件拟合随机谱获得外延层中的xAl. 并对样品的均匀性、堆积校准、计数统计、散射角、离子束能量与阻止截面 等影响测量结果准确性的不确定度来源进行分析. 结果表明, 采用入射离子4He, 能量为2000 keV, 散射角为165° 时, 氮铝镓外延片中铝含量(x=0.8) 的测量不确定度为2.0%, 包含扩展因子k=2.
-
关键词:
- 氮铝镓 /
- 卢瑟福背散射 /
- 测量不确定度 /
- 金属有机化合物气相淀积法
The AlxGa1-xN epitaxial film is grown on (0001)-oriented sapphire with a 20 nm thick aluminium nitride buffer layer by metal organic chemical vapor deposition. The thickness of AlxGa1-xN layer with high crystal quality is about 2 μrm determined by ultraviolet visible light transmittance spectrum analysis. The homogeneity of aluminium in AlxGa1-xN epitaxial film is tested through the energy Eg at the peak intensity in the deep ultraviolet photoluminescence spectrum. The epitaxial wafer with good homogeneity is used to determine aluminium composition by Rutherford backscattering spectroscopy (RBS). Six samples are measured by tow ion beam analysis laboratories, and the experimental data of RBS random spectrum are simulated by the software. The source of measurement uncertainty is analyzed including the sample homogeneity, pileup correction and counting statistics and so on. The research results show that when the alpha particle is used as incident ion, with 2000 keV energy and 165° scattering angle, the measurement uncertainty of RBS for the determination of aluminium composition (x=0.8) is 2.0% and the coverage factor k=2.-
Keywords:
- AlxGa1-xN /
- Rutherford backscattering spectroscopy /
- uncertainty /
- metal organic chemical vapor deposition
[1] Xie Z L, Zhang R, Xiu X Q, Han P, Liu B, Chen L, Yu H Q, Jiang R L, Shi Y, Zheng Y D 2007 Acta Phys. Sin. 56 6717(in Chinese) [谢自力, 张荣, 修向前, 韩 平, 刘 斌, 陈 琳, 俞慧强, 江若琏, 施 毅, 郑有蚪 2007 56 6717]
[2] Li C D, Han H L 2009 OME Information 26 24 (in Chinese) [李长栋, 韩慧玲 2009 光机电信息 26 24]
[3] Zhou Y J, Xie Z L, Zhang R, Liu B, Li Y, Zhang Z, Fu D Y, Xiu X Q, Han P, Gu S L, Zheng Y D 2009 Micronanoelectronic Tech. 46 108 (in Chinese) [周元俊, 谢自立, 张荣, 刘斌, 李弋, 张曾, 傅德颐, 修向前, 韩平, 顾书林, 郑有蚪 2009 微纳电子技术 46 108]
[4] Wu M F, Vantomme A, Hogg S 2001 Nucl. Instr. Meth. Phys. Res. B 174 181
[5] Du Y, Li P C, Zhou X W, Bai J C 2009 Electronic Sci. Tech. 22 69 (in Chinese) [杜阳, 李培成, 周小伟, 白俊春 2009 电子科技 22 69]
[6] Qi X Y, Li C C, Yang G L, Cai L X 2007 J. Lanzhou Univ. Tech. 33 162 (in Chinese) [齐学义, 李晨晨, 杨国来, 蔡丽霞 2007 兰州理工大学学报 33 162]
[7] Ding Z B, Wang Q, Wang K, Wang H, Chen T X, Zhang G Y, Yao S D 2007 Acta Phys. Sin. 56 2873 (in Chinese) [丁志博, 王琦, 王坤, 王欢, 陈田祥, 张国义, 姚淑德 2007 56 2873]
[8] Wang B Z, Wang X L 2009 J. Inorg. Mater. 24 559 (in Chinese) [王宝柱, 王晓亮 2009 无机材料学报 24 559]
[9] Li C, Li X, Xu J T, Li X Y 2009 Acta Photon. Sin. 38 2294 (in Chinese) [李超, 李雪, 许金通, 李向阳 2009 光子学报 38 2294]
[10] Westmeyer A N, Mahajan S, Bajaj K K, Lin J Y, Jiang H X, Koeleske D D, Senger R T 2006 J. Appl. Phys. 99 013705
[11] Martin R W, Middleton P G, Van der Stricht W 1998 Appl. Phys. Lett. 74 263
[12] Quan H, Han Y Z 2003 Reference Material and Its Application Technology (Vol.2) (Beijing: Standard Press Beijing) p91 (in Chinese) [全浩, 韩永志 2003 标准物质及其应用技术(第二版) (北京: 中国标准出版社) 第91页]
[13] Jeynes C, Jafri Z H, Webb R P 1997 Surf. Interface Anal. 25 254
[14] Boudreault G, Jeynes C, Wendler E, Nejim A, Webb R P 2002 Surf. Interface Anal. 33 478
[15] Bianconi M, Abel F, Banks J C, Climent F A, Cohen C J, Doyle B L, Lotti R, Lulli G, Nipoti R, Vickridge L, Walsh D, Wendler E 2000 Nucl. Instr. Meth. Phys. Res. B 161 293
[16] Barradas N P, Jeynes C, Webb R P, Wendler E 2002 Nucl. Instr. Meth. Phys. Res. B 194 15
[17] Jeynes C, Barradas N P, Sziláyi E 2012 Anal. Chem. 84 6061
-
[1] Xie Z L, Zhang R, Xiu X Q, Han P, Liu B, Chen L, Yu H Q, Jiang R L, Shi Y, Zheng Y D 2007 Acta Phys. Sin. 56 6717(in Chinese) [谢自力, 张荣, 修向前, 韩 平, 刘 斌, 陈 琳, 俞慧强, 江若琏, 施 毅, 郑有蚪 2007 56 6717]
[2] Li C D, Han H L 2009 OME Information 26 24 (in Chinese) [李长栋, 韩慧玲 2009 光机电信息 26 24]
[3] Zhou Y J, Xie Z L, Zhang R, Liu B, Li Y, Zhang Z, Fu D Y, Xiu X Q, Han P, Gu S L, Zheng Y D 2009 Micronanoelectronic Tech. 46 108 (in Chinese) [周元俊, 谢自立, 张荣, 刘斌, 李弋, 张曾, 傅德颐, 修向前, 韩平, 顾书林, 郑有蚪 2009 微纳电子技术 46 108]
[4] Wu M F, Vantomme A, Hogg S 2001 Nucl. Instr. Meth. Phys. Res. B 174 181
[5] Du Y, Li P C, Zhou X W, Bai J C 2009 Electronic Sci. Tech. 22 69 (in Chinese) [杜阳, 李培成, 周小伟, 白俊春 2009 电子科技 22 69]
[6] Qi X Y, Li C C, Yang G L, Cai L X 2007 J. Lanzhou Univ. Tech. 33 162 (in Chinese) [齐学义, 李晨晨, 杨国来, 蔡丽霞 2007 兰州理工大学学报 33 162]
[7] Ding Z B, Wang Q, Wang K, Wang H, Chen T X, Zhang G Y, Yao S D 2007 Acta Phys. Sin. 56 2873 (in Chinese) [丁志博, 王琦, 王坤, 王欢, 陈田祥, 张国义, 姚淑德 2007 56 2873]
[8] Wang B Z, Wang X L 2009 J. Inorg. Mater. 24 559 (in Chinese) [王宝柱, 王晓亮 2009 无机材料学报 24 559]
[9] Li C, Li X, Xu J T, Li X Y 2009 Acta Photon. Sin. 38 2294 (in Chinese) [李超, 李雪, 许金通, 李向阳 2009 光子学报 38 2294]
[10] Westmeyer A N, Mahajan S, Bajaj K K, Lin J Y, Jiang H X, Koeleske D D, Senger R T 2006 J. Appl. Phys. 99 013705
[11] Martin R W, Middleton P G, Van der Stricht W 1998 Appl. Phys. Lett. 74 263
[12] Quan H, Han Y Z 2003 Reference Material and Its Application Technology (Vol.2) (Beijing: Standard Press Beijing) p91 (in Chinese) [全浩, 韩永志 2003 标准物质及其应用技术(第二版) (北京: 中国标准出版社) 第91页]
[13] Jeynes C, Jafri Z H, Webb R P 1997 Surf. Interface Anal. 25 254
[14] Boudreault G, Jeynes C, Wendler E, Nejim A, Webb R P 2002 Surf. Interface Anal. 33 478
[15] Bianconi M, Abel F, Banks J C, Climent F A, Cohen C J, Doyle B L, Lotti R, Lulli G, Nipoti R, Vickridge L, Walsh D, Wendler E 2000 Nucl. Instr. Meth. Phys. Res. B 161 293
[16] Barradas N P, Jeynes C, Webb R P, Wendler E 2002 Nucl. Instr. Meth. Phys. Res. B 194 15
[17] Jeynes C, Barradas N P, Sziláyi E 2012 Anal. Chem. 84 6061
计量
- 文章访问数: 6194
- PDF下载量: 396
- 被引次数: 0