搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄膜硅的变隙问题及隙态分布

张治国

引用本文:
Citation:

薄膜硅的变隙问题及隙态分布

张治国

Variable gap and gap state distribution of film silicon

Zhang Zhi-Guo
PDF
导出引用
  • 用电子束蒸发的方法制备可变光学带隙薄膜硅材料, 给出了研究结果. 介绍了一种做透过率曲线切线确定薄膜光学带隙的简易方法, 给出了制备工艺和条件, 以及各种材料的隙态分布图. 实验发现, 材料的光学带隙宽度不但与量子尺度效应有关, 而且与缺陷形成的势垒高度和宽度以及有序短程(原子串)长度有关; 给出了常规硅材料的光学带隙与原子串长度的关系. 计算表明, 随着原子串长度的加大, 势阱中的电子液面升高, 载流子受缺陷势垒的散射减弱; 在原子串长度较低的情况下, 电子液面不总是随着原子串长度升高, 而是有较大的涨落, 形成锯齿状波动.计算还发现, 在势垒宽度与原子串长度之比不变的情况下, 电子液面还与势垒高度有关.
    A method of preparing film silicon with variable optical gap is introduced, and the relevant results are given. An easy way to determine the film optical gap by transmittivity curve tangent is shown, and the preparation craftwork and conditions are given. The gap state distribution maps of various materials are presented. In experiment, it is found that the optical gap width of material is related not only to the quantum size effect, but also to the height and width of the barrier formed by lacuna, and to the length of short range order (atom cluster length) as well. A relationship between optical gap of silicon film and atom cluster length is given. Computations show that electron liquid level lifts in potential well with atom cluster length increasing, and the scattering of carrier is weakened by defect barrier. When the atom cluster length is shorter, the electron liquid level does not always lift with atom cluster length increasing, but fluctuates heavily and forms an indention wave. The computations also show that in the case of a constant ratio of the barrier width to the length of the atomic string, the electronic liquid level is also related to the barrier height.
    • 基金项目: 福建省高校服务海西建设重点项目(批准号: A100)资助的课题.
    • Funds: Project supported by the Importance Item of Fujian Province University Serving HaiXi, China (Grant No. A100).
    [1]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [2]

    Liu W S, Wu H M, Tsao F H, Hsu T L, Chyi J I 2012 Sol. Energy Mater. Sol. Cells 105 237

    [3]

    Mller J, Rech B, Springer J 2004 Sol. Energy 77 917

    [4]

    Razykov T M, Ferekides C S, Morel D, Stefanakos E, Ullal H S, Upadhyaya H M 2011 Sol. Energy 85 1580

    [5]

    Hegedus S S, McCandless B E 2005 Sol. Energy Mat. Sol. Cells 88 75

    [6]

    Tvrdy K, Kamat P V 2010 Comprehensive Nanoscience and Technology 4 257

    [7]

    Poulose A C, Veeranarayanan S, Varghese S H, Yoshida Y, Maekawa T, Kumar D S 2012 Chem. Phys. Lett. 539-540 197

    [8]

    Dorfs D, Krahne R, Falqui A, Manna L, Giannini C, Zanchet D 2010 Comprehensive Nanoscience and Technology 1 219

    [9]

    Shi G H, Shang Z B, Wang Y, Jin W J, Zhang T C 2008 Spectrochim. Acta Part A 70 247

    [10]

    Shen Q, Sato T, Hashimoto M, Chenc C, Toyoda T 2006 Thin Solid Films 499 299

    [11]

    Mora-SeróI, Dittrich T, Susha A S, Rogach A L, Bisquert J 2008 Thin Solid Films 516 6994

    [12]

    Ramanathan K, Contreras M A, Perkins C L, Asher S, Hasoon F S, Keane J, Young D, Romero M, Metzger W, Noufi R, Ward J, Duda A 2003 Prog. Photovolt.: Res. Appl. 11 225

    [13]

    Baskoutas S, Terzis A F 2006 J. Appl. Phys. 99 013708

    [14]

    Schaller R D, Klimov V I 2004 Phys. Rev. Lett. 92 186601

    [15]

    Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U 2011 Science 332 77

    [16]

    Cao Y C 2011 Science 332 48

    [17]

    Kulakci M, Serincan U, Turan R, Finstad T G 2008 Nanotechnology 45 455403

    [18]

    Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A, Lin K L 2006 Thin Solid Films 511-512 654

    [19]

    Park S, Cho E, Song D Y, Conibeer G, Green M A 2009 Sol. Energy Mater. Sol. Cells 93 684

    [20]

    Timmerman D, Izeddin I, Stallinga P, Yassievich I N, Gregorkiewicz T 2008 Nature Photon. 2 61

    [21]

    Di D, Perez-Wurfl I, Conibeer G, Green M A 2010 Sol. Energy Mater. Sol. Cells 94 2238

    [22]

    Wurfl P, Ma L, Lin D, Hao X, Green M A, Conibeer G 2012 Sol. Energy Mater. Sol. Cells 100 65

    [23]

    Zhang Z G 2008 Acta Phys. Sin. (in Chinese) 57 5823 [张治国2008 57 5823]

    [24]

    Ji Z G 2005 Physics of Semiconductor (Hangzhou: Zhejiang University Press) p130 (in Chinese) [季振国 2005 半导体物理学(杭州: 浙江大学出版社)第130页]

    [25]

    Guo Y C, Wang Z X 1984 Amorphous Solid Physics (Beijing: Science Press) p246 (in Chinese) [郭贻诚, 王震西 1984非晶态物理学 (北京: 科学出版社) 第246页]

    [26]

    Chen K J 1987 Amorphous Semiconductor Physics (Beijing: China Academic Press) p91 (in Chinese) [陈坤基 1987非晶态半导体物理引论 (北京: 中国学术出版社)第91页]

    [27]

    Luo J S, Rong A L 1986 Amorphous Semiconductor (Xi'an: Xi'an Jiao Tong University Press) p101 (in Chinese) [罗晋生, 戎霭伦 1986非晶半导体 (西安: 西安交通大学出版社)第101]

    [28]

    Ji Z G 2005 Physics of Semiconductor (Zhejiang: Zhejiang University Press) p139 (in Chinese) [季振国 2005半导体物理学 (浙江: 浙江大学出版社) 第139页]

    [29]

    Zhang Z G 2011 Chin. Sci. Bull. 56 2133 (in Chinese) [张治国 2011科学通报 56 2133]

    [30]

    Wu Z Q, Wang B 2001 Film Growing (Beijing: Science Press) p170 (in Chinise) [吴自勤, 王兵 2001薄膜生长 (北京: 科学出版社) 第170页]

    [31]

    Zhang Z G 2012 Appl. Mech. Mater. 217-219 1038

    [32]

    Zhang Z G 2010 Chin. Phys. B 19 127802

  • [1]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [2]

    Liu W S, Wu H M, Tsao F H, Hsu T L, Chyi J I 2012 Sol. Energy Mater. Sol. Cells 105 237

    [3]

    Mller J, Rech B, Springer J 2004 Sol. Energy 77 917

    [4]

    Razykov T M, Ferekides C S, Morel D, Stefanakos E, Ullal H S, Upadhyaya H M 2011 Sol. Energy 85 1580

    [5]

    Hegedus S S, McCandless B E 2005 Sol. Energy Mat. Sol. Cells 88 75

    [6]

    Tvrdy K, Kamat P V 2010 Comprehensive Nanoscience and Technology 4 257

    [7]

    Poulose A C, Veeranarayanan S, Varghese S H, Yoshida Y, Maekawa T, Kumar D S 2012 Chem. Phys. Lett. 539-540 197

    [8]

    Dorfs D, Krahne R, Falqui A, Manna L, Giannini C, Zanchet D 2010 Comprehensive Nanoscience and Technology 1 219

    [9]

    Shi G H, Shang Z B, Wang Y, Jin W J, Zhang T C 2008 Spectrochim. Acta Part A 70 247

    [10]

    Shen Q, Sato T, Hashimoto M, Chenc C, Toyoda T 2006 Thin Solid Films 499 299

    [11]

    Mora-SeróI, Dittrich T, Susha A S, Rogach A L, Bisquert J 2008 Thin Solid Films 516 6994

    [12]

    Ramanathan K, Contreras M A, Perkins C L, Asher S, Hasoon F S, Keane J, Young D, Romero M, Metzger W, Noufi R, Ward J, Duda A 2003 Prog. Photovolt.: Res. Appl. 11 225

    [13]

    Baskoutas S, Terzis A F 2006 J. Appl. Phys. 99 013708

    [14]

    Schaller R D, Klimov V I 2004 Phys. Rev. Lett. 92 186601

    [15]

    Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U 2011 Science 332 77

    [16]

    Cao Y C 2011 Science 332 48

    [17]

    Kulakci M, Serincan U, Turan R, Finstad T G 2008 Nanotechnology 45 455403

    [18]

    Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A, Lin K L 2006 Thin Solid Films 511-512 654

    [19]

    Park S, Cho E, Song D Y, Conibeer G, Green M A 2009 Sol. Energy Mater. Sol. Cells 93 684

    [20]

    Timmerman D, Izeddin I, Stallinga P, Yassievich I N, Gregorkiewicz T 2008 Nature Photon. 2 61

    [21]

    Di D, Perez-Wurfl I, Conibeer G, Green M A 2010 Sol. Energy Mater. Sol. Cells 94 2238

    [22]

    Wurfl P, Ma L, Lin D, Hao X, Green M A, Conibeer G 2012 Sol. Energy Mater. Sol. Cells 100 65

    [23]

    Zhang Z G 2008 Acta Phys. Sin. (in Chinese) 57 5823 [张治国2008 57 5823]

    [24]

    Ji Z G 2005 Physics of Semiconductor (Hangzhou: Zhejiang University Press) p130 (in Chinese) [季振国 2005 半导体物理学(杭州: 浙江大学出版社)第130页]

    [25]

    Guo Y C, Wang Z X 1984 Amorphous Solid Physics (Beijing: Science Press) p246 (in Chinese) [郭贻诚, 王震西 1984非晶态物理学 (北京: 科学出版社) 第246页]

    [26]

    Chen K J 1987 Amorphous Semiconductor Physics (Beijing: China Academic Press) p91 (in Chinese) [陈坤基 1987非晶态半导体物理引论 (北京: 中国学术出版社)第91页]

    [27]

    Luo J S, Rong A L 1986 Amorphous Semiconductor (Xi'an: Xi'an Jiao Tong University Press) p101 (in Chinese) [罗晋生, 戎霭伦 1986非晶半导体 (西安: 西安交通大学出版社)第101]

    [28]

    Ji Z G 2005 Physics of Semiconductor (Zhejiang: Zhejiang University Press) p139 (in Chinese) [季振国 2005半导体物理学 (浙江: 浙江大学出版社) 第139页]

    [29]

    Zhang Z G 2011 Chin. Sci. Bull. 56 2133 (in Chinese) [张治国 2011科学通报 56 2133]

    [30]

    Wu Z Q, Wang B 2001 Film Growing (Beijing: Science Press) p170 (in Chinise) [吴自勤, 王兵 2001薄膜生长 (北京: 科学出版社) 第170页]

    [31]

    Zhang Z G 2012 Appl. Mech. Mater. 217-219 1038

    [32]

    Zhang Z G 2010 Chin. Phys. B 19 127802

  • [1] 吴诗漫, 陶思敏, 吉爱闯, 管绍杭, 肖剑荣. 硒化温度对MoSe2薄膜结构和光学带隙的影响.  , 2024, 73(19): 196801. doi: 10.7498/aps.73.20240611
    [2] 苗信建, 黄伟其, 黄忠梅, 周年杰, 尹君. 通信波段硅基气孔光子晶体的带隙特性及其物理模型研究.  , 2014, 63(3): 030203. doi: 10.7498/aps.63.030203
    [3] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响.  , 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [4] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计.  , 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [5] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究.  , 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [6] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜.  , 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [7] 吴晨阳, 谷锦华, 冯亚阳, 薛源, 卢景霄. 椭圆偏振光谱表征单晶硅衬底上生长的非晶硅和外延硅薄膜.  , 2012, 61(15): 157803. doi: 10.7498/aps.61.157803
    [8] 高立, 张建民. 带隙可调的Al,Mg掺杂ZnO薄膜的制备.  , 2009, 58(10): 7199-7203. doi: 10.7498/aps.58.7199
    [9] 彭文博, 刘石勇, 肖海波, 张长沙, 石明吉, 曾湘波, 徐艳月, 孔光临, 俞育德. 微晶硅薄膜带隙态及微结构的研究.  , 2009, 58(8): 5716-5720. doi: 10.7498/aps.58.5716
    [10] 邓金祥, 汪旭洋, 姚 倩, 周 涛, 张晓康. 立方氮化硼薄膜的光学带隙.  , 2008, 57(10): 6631-6635. doi: 10.7498/aps.57.6631
    [11] 赵 雷, 周春兰, 李海玲, 刁宏伟, 王文静. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化.  , 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [12] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅱ)射频功率对薄膜光学带隙的影响.  , 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [13] 肖剑荣, 徐 慧, 李燕峰, 李明君. 氮分压对氮化铜薄膜结构及光学带隙的影响.  , 2007, 56(7): 4169-4174. doi: 10.7498/aps.56.4169
    [14] 缑 洁, 何志巍, 潘国辉, 王印月. 用SCLC法研究低k多孔SiO2:F薄膜的隙态密度.  , 2006, 55(6): 2936-2940. doi: 10.7498/aps.55.2936
    [15] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙.  , 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [16] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性.  , 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [17] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联.  , 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
    [18] 叶超, 宁兆元, 程珊华, 王响英. 氟化非晶碳薄膜的光学带隙分析.  , 2002, 51(11): 2640-2643. doi: 10.7498/aps.51.2640
    [19] 吴文豪, 韩大星. 用红外光激励电流法研究非晶半导体带隙态分布.  , 1988, 37(6): 916-923. doi: 10.7498/aps.37.916
    [20] 苏子敏, 彭少麒. 用内光发射瞬态电流温度谱测定a-Si:H的隙态密度分布.  , 1986, 35(6): 731-740. doi: 10.7498/aps.35.731
计量
  • 文章访问数:  5833
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-06
  • 修回日期:  2013-03-22
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map