-
立足于Yb离子能级结构、谐振腔增益损耗和布居数分配情况, 利用爱因斯坦辐射理论和速率方程理论, 建立了适合Yb3+离子激光的准三能级理论模型. 该模型引入有效腔长增益贡献因子对腔内光强进行了从头计算, 获得了阈值方程. 利用此模型与Yb激光的实验结果相比较, 发现有效腔长对增益的贡献可以改变腔内损耗和粒子数反转的概率, 也继而影响激光阈值和输出功率效率. 应用于LD端抽运Yb3+:YVO4激光实验中, 在971 nm LD抽运, 有效晶体长度 L=1 mm, 输出镜透过率对激光波长1016 nm为1%条件下, 获得阈值为1.1 W; 有效晶体长度L=2 mm, 输出镜透过率为10%条件下, 阈值获得为3.9 W.
-
关键词:
- Yb3+:YVO4 /
- 准三能级模型 /
- 有效腔长增益贡献因子
In a Yb3+ laser, the two-energy level structure is close to the quasi-three-level model, but different from that for the Nd and Tm lasers, so it is necessary to investigate the quasi-three-level modeling that will be applied to the Yb3+ laser. Based on the energy level structure, cavity gain and loss as well as population distribution, we present the modeling. Introducing an effective cavity length factor, the laser intensity is calculated and the threshold is obtained. Comparison with the experiments, indicates that the effective cavity length ratio changes the fractional population function and loss, which would influence the threshold and output in turn. Applied to investigate the laser property in the process of end pumping Yb3+:YVO4 laser, we get the threshold being 1.1 W, corresponding to the L=1 mm and T=1%; whereas the threshold is 3.9 W, corresponding to the L=2 mm and T=10%.-
Keywords:
- Yb3+:YVO4 /
- quasi-three-level /
- effective cavity length factor
[1] Stefan Bjurshagen, Ralf Koch 2004 Applied Optics 43 4753
[2] Zhou Y, Yao S N, Liu J, Chen J B, Chen S F, Xin J G 2013 Acta Phys. Sin. 62 024210 (in Chinese) [周英, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国 2013 62 024210]
[3] Beach R J 1995 Optics Communications 123 385
[4] Brenier A, Boulon G 2001 Journal of Alloys and Compounds 323 210
[5] Gao J Y, Zhang Q L, Sun D L, Liu W B, Yang H J, Wang X F, Yin S T 2013 Acta Phys. Sin. 62 013102 (in Chinese) [高进云, 张庆礼, 孙敦陆, 刘文鹏, 杨华军, 王小飞, 殷绍唐 2013 62 013102]
[6] Fan T Y, Byer R L 1987 IEEE J. Quantum Electron QE-23 605
[7] Risk W P 1988 J. Opt. Soc. Am. B 5 1412
[8] Li S M, Huang W L 2005 Laser devices principle and designs (Beijing: National defence industry press) p150-160 (in Chinese) [李适民, 黄维玲 2005 激光器件原理与设计 (北京: 国防工业出版社) 第150–160页]
[9] Takunori T, Tulloch W M, Byer R L 1997 Applied Optics 36 1867
[10] Kisel V E, Troshin A E, Tolstik N A, Shcherbitsky V G, Kuleshov N V, Matrosov V N, Matrosova T A, Kupchenko M I 2004 Optics Letters 29 2491
[11] Lan J M, Chen J Z, Guo F Y, Gao S K, Hu X L, Zhuang N F 2003 Journal of Synthetic Crystals 32 449
-
[1] Stefan Bjurshagen, Ralf Koch 2004 Applied Optics 43 4753
[2] Zhou Y, Yao S N, Liu J, Chen J B, Chen S F, Xin J G 2013 Acta Phys. Sin. 62 024210 (in Chinese) [周英, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国 2013 62 024210]
[3] Beach R J 1995 Optics Communications 123 385
[4] Brenier A, Boulon G 2001 Journal of Alloys and Compounds 323 210
[5] Gao J Y, Zhang Q L, Sun D L, Liu W B, Yang H J, Wang X F, Yin S T 2013 Acta Phys. Sin. 62 013102 (in Chinese) [高进云, 张庆礼, 孙敦陆, 刘文鹏, 杨华军, 王小飞, 殷绍唐 2013 62 013102]
[6] Fan T Y, Byer R L 1987 IEEE J. Quantum Electron QE-23 605
[7] Risk W P 1988 J. Opt. Soc. Am. B 5 1412
[8] Li S M, Huang W L 2005 Laser devices principle and designs (Beijing: National defence industry press) p150-160 (in Chinese) [李适民, 黄维玲 2005 激光器件原理与设计 (北京: 国防工业出版社) 第150–160页]
[9] Takunori T, Tulloch W M, Byer R L 1997 Applied Optics 36 1867
[10] Kisel V E, Troshin A E, Tolstik N A, Shcherbitsky V G, Kuleshov N V, Matrosov V N, Matrosova T A, Kupchenko M I 2004 Optics Letters 29 2491
[11] Lan J M, Chen J Z, Guo F Y, Gao S K, Hu X L, Zhuang N F 2003 Journal of Synthetic Crystals 32 449
计量
- 文章访问数: 6958
- PDF下载量: 814
- 被引次数: 0