搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合腔阵列与-型三能级原子非局域耦合系统中单光子的传输特性研究

海莲 张莎 李维银 谭磊

引用本文:
Citation:

耦合腔阵列与-型三能级原子非局域耦合系统中单光子的传输特性研究

海莲, 张莎, 李维银, 谭磊

Single photon transport properties in the system of coupled cavity array nonlocally coupled to a -type three-level atom

Hai Lian, Zhang Sha, Li Wei-Yin, Tan Lei
PDF
导出引用
  • 讨论了理想和非理想情况下耦合腔阵列中两个最邻近的腔与-型三能级原子非局域耦合系统中单光子的传输特性.运用准玻色子方法,精确地解出了开放系统中单光子的透射率.-型三能级原子与耦合腔阵列非局域耦合系统具有更多的优点,如:该系统比其他系统调控光子传输特性的可调控参数更多;单光子在该系统中传输的透射谱有三个透射峰.此外,该系统还具有自身的特点,当拉比频率取值给定之后,改变原子与其中一个腔的耦合强度时,光子的透射谱有一个透射率始终为1的定点,该点对应的光子频率为c-.在非理想情况下,系统耗散对光子的透射谱有着很大的影响.当只考虑原子耗散时,耗散使得光子透射谱的谷值增大,而峰值不变;当只考虑腔场耗散时,光子透射谱的峰值减小,而谷值不变.另外,随着腔场耗散率和腔的个数的增多,光子透射谱的峰值逐渐减小,但谷值始终不变.对比原子耗散和腔场耗散的情况可以发现,原子耗散使得光子不能被完全反射,而腔场耗散使得光子不能被完全透射.当同时考虑原子和腔场耗散时,光子透射谱谷值的大小不但会受原子耗散率大小的影响,也受腔场耗散率大小的影响,随着腔场耗散率的增大,谷值反而减小;而光子透射谱的峰值始终只受腔场耗散率大小和腔的个数的影响,与原子耗散率取值的大小无关.
    In this paper, we discuss the transport properties of a single photon, which is in a coupled cavity array system where the two nearest cavities nonlocally couple to a -type three-level atom, under the condition of ideal and dissipation, respectively. By employing the quasi-boson picture, the transmission amplitude of the single photon in an open system is investigated analytically. The system where the coupled cavity array nonlocally couples with the three-level atom demonstrates several advantages. Compared with other systems, this system has many parameters to manipulate the single photon transport properties. Moreover, the system of the coupled cavity array that nonlocally couples with the three-level atom may have a wider range of application because the single photon transmission spectrum in this system has three peaks. Furthermore, it has characteristics of its own. At the same value of Rabi frequency , changing the coupling strength between the atom and one cavity of the coupled cavity array shows that there exists an fixed point where the transmission rate is always 1, and the point is corresponding to the frequency of the photon c-. In the nonideal case, it is shown that the dissipations of the cavity and the atom affect distinctively the transmission of photons in the coupled cavity arrays. When considering only the dissipation of the atom, the atomic dissipation increases the dips of the single photon transport spectrum, while the peaks have no observable changes. When considering only the dissipation of the cavity, the peaks of the single photon transmission amplitude are diminished deeply, while the cavity dissipation does not have any effect on the dips. In addition, with both the cavity dissipation rate and the number of the cavity increasing, the photon transmission spectrum peaks decrease. A comparison of the dissipative cavity case with the dissipative atom case shows that the incomplete reflect near the peak is mostly caused by the cavity dissipation, and that the incomplete reflect near the dip is mostly caused by the three-level atom dissipation. Specifically, when considering both the atom and the cavity dissipation at the same time, the dips of the single photon transport spectrum are affected by both the atomic and the cavity dissipation. Instead, with the cavity dissipation rate increasing, the photon transmission spectrum dips are reduced. But for the peaks of the single photon transport spectrum, the dips are always determined by the cavity dissipation rate and the number of the cavity, while the atomic dissipation has no significant influence on them.
      通信作者: 谭磊, tanlei@lzu.edu.cn
    • 基金项目: 国家民委科研基金(批准号:14BFZ013)和国家自然科学基金(批准号:11647009)资助的课题.
      Corresponding author: Tan Lei, tanlei@lzu.edu.cn
    • Funds: Project supported by the State Ethnic Scientific Research Projects,China (Grant No.14BFZ013) and the National Natural Science Foundation of China (Grant No.11647009).
    [1]

    Hartmann M J, Brando F G S L, Plenio M B 2008 Laser Photon. Rev. 2 527

    [2]

    Sun C P, Wei L F, Liu Y X, Nori F 2006 Phys. Rev. A 73 022318

    [3]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. Lett. 101 100501

    [4]

    Gong Z R, Ian H, Zhou L, Sun C P 2008 Phys. Rev. A 78 053806

    [5]

    Biella A, Mazza L, Carusotto I, Rossini D, Rosario F 2015 Phys. Rev. A 91 053815

    [6]

    Cheng M T, Song Y Y, Ma X S 2016 J. Mod. Opt. 63 881

    [7]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [8]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671

    [9]

    Srinivasan K, Painter O 2007 Nature 450 862

    [10]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [11]

    Rosenblit M, Horak P, Helsby S, Folman R 2004 Phys. Rev. A 70 053808

    [12]

    Zang X F, Jiang C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215501

    [13]

    Zhou T, Zang X F, Liu Y S, Zheng L, Gao T 2015 J. Mod. Opt. 62 32

    [14]

    Cheng M T, Song Y Y, Luo Y Q, Ma X S, Wang P Z 2011 J. Mod. Opt. 58 1233

    [15]

    Cheng M T, Zong W W, Ye G L, Ma X S, Zhang J Y, Wang B 2016 Commun. Theor. Phys. 65 767

    [16]

    Shi Y Q, Kong W L, Wu R C, Zhang W X, Tan L 2017 Acta Phys. Sin. 66 054204 (in Chinese) [石永强, 孔维龙, 吴仁存, 张文轩, 谭磊 2017 66 054204]

    [17]

    Shen J T, Fan S 2009 Phys. Rev. A 79 023837

    [18]

    Shen J T, Fan S 2009 Phys. Rev. A 79 023838

    [19]

    Rephaeli E, Shen J T, Fan S 2010 Phys. Rev. A 82 033804

    [20]

    Zhou L, Yang S, Liu Y X, Sun C P, Nori F 2009 Phys. Rev. A 80 062109

    [21]

    Hai L, Tan L, Feng J S, Bao J, L C H, Wang B 2013 Eur. Phys. J. D 67 173

    [22]

    Cheng M T, Ma X S, Ting M T, Luo Y Q, Zhao G X 2012 Phys. Rev. A 85 053840

    [23]

    Cheng M T, Luo Y Q, Song Y Y, Zhao G X 2011 Commun. Theor. Phys. 55 501

    [24]

    Schmid S I, Evers J 2011 Phys. Rev. A 84 053822

    [25]

    Witthaut D, Srensen A S 2010 New. J. Phys. 12 043052

    [26]

    Zhou L, Chang Y, Dong H, Kuang L M, Sun C P 2012 Phys. Rev. A 85 013806

    [27]

    Lang J H 2010 Chin. Phys. Lett. 28 104210

    [28]

    del Valle E, Hartmann M J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224023

    [29]

    Creatore C, Fazio R, Keeling J, Treci H E 2014 Proc. R. Soc. A 470 20140328

    [30]

    Liu K, Tan L, L C H, Liu W M 2011 Phys. Rev. A 83 063840

    [31]

    Bao J, Tan L 2014 Acta Phys. Sin. 63 084201 (in Chinese) [鲍佳, 谭磊 2014 63 084201]

    [32]

    Tan L, Hai L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035504

    [33]

    Hai L, Tan L, Feng J S, Xu W B, Wang B 2014 Chin. Phys. B 23 024202

    [34]

    Notomi M, Kuramochi E, Tanabe T 2008 Nat. Photon. 2 741

  • [1]

    Hartmann M J, Brando F G S L, Plenio M B 2008 Laser Photon. Rev. 2 527

    [2]

    Sun C P, Wei L F, Liu Y X, Nori F 2006 Phys. Rev. A 73 022318

    [3]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. Lett. 101 100501

    [4]

    Gong Z R, Ian H, Zhou L, Sun C P 2008 Phys. Rev. A 78 053806

    [5]

    Biella A, Mazza L, Carusotto I, Rossini D, Rosario F 2015 Phys. Rev. A 91 053815

    [6]

    Cheng M T, Song Y Y, Ma X S 2016 J. Mod. Opt. 63 881

    [7]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [8]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671

    [9]

    Srinivasan K, Painter O 2007 Nature 450 862

    [10]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [11]

    Rosenblit M, Horak P, Helsby S, Folman R 2004 Phys. Rev. A 70 053808

    [12]

    Zang X F, Jiang C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215501

    [13]

    Zhou T, Zang X F, Liu Y S, Zheng L, Gao T 2015 J. Mod. Opt. 62 32

    [14]

    Cheng M T, Song Y Y, Luo Y Q, Ma X S, Wang P Z 2011 J. Mod. Opt. 58 1233

    [15]

    Cheng M T, Zong W W, Ye G L, Ma X S, Zhang J Y, Wang B 2016 Commun. Theor. Phys. 65 767

    [16]

    Shi Y Q, Kong W L, Wu R C, Zhang W X, Tan L 2017 Acta Phys. Sin. 66 054204 (in Chinese) [石永强, 孔维龙, 吴仁存, 张文轩, 谭磊 2017 66 054204]

    [17]

    Shen J T, Fan S 2009 Phys. Rev. A 79 023837

    [18]

    Shen J T, Fan S 2009 Phys. Rev. A 79 023838

    [19]

    Rephaeli E, Shen J T, Fan S 2010 Phys. Rev. A 82 033804

    [20]

    Zhou L, Yang S, Liu Y X, Sun C P, Nori F 2009 Phys. Rev. A 80 062109

    [21]

    Hai L, Tan L, Feng J S, Bao J, L C H, Wang B 2013 Eur. Phys. J. D 67 173

    [22]

    Cheng M T, Ma X S, Ting M T, Luo Y Q, Zhao G X 2012 Phys. Rev. A 85 053840

    [23]

    Cheng M T, Luo Y Q, Song Y Y, Zhao G X 2011 Commun. Theor. Phys. 55 501

    [24]

    Schmid S I, Evers J 2011 Phys. Rev. A 84 053822

    [25]

    Witthaut D, Srensen A S 2010 New. J. Phys. 12 043052

    [26]

    Zhou L, Chang Y, Dong H, Kuang L M, Sun C P 2012 Phys. Rev. A 85 013806

    [27]

    Lang J H 2010 Chin. Phys. Lett. 28 104210

    [28]

    del Valle E, Hartmann M J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224023

    [29]

    Creatore C, Fazio R, Keeling J, Treci H E 2014 Proc. R. Soc. A 470 20140328

    [30]

    Liu K, Tan L, L C H, Liu W M 2011 Phys. Rev. A 83 063840

    [31]

    Bao J, Tan L 2014 Acta Phys. Sin. 63 084201 (in Chinese) [鲍佳, 谭磊 2014 63 084201]

    [32]

    Tan L, Hai L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035504

    [33]

    Hai L, Tan L, Feng J S, Xu W B, Wang B 2014 Chin. Phys. B 23 024202

    [34]

    Notomi M, Kuramochi E, Tanabe T 2008 Nat. Photon. 2 741

  • [1] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变.  , 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [2] 朱明杰, 赵微, 王治海. 巨腔系统中的光子屏蔽.  , 2023, 72(9): 094202. doi: 10.7498/aps.72.20230049
    [3] 石永强, 孔维龙, 吴仁存, 张文轩, 谭磊. 耗散耦合腔阵列耦合量子化腔场驱动三能级体系中的单光子输运.  , 2017, 66(5): 054204. doi: 10.7498/aps.66.054204
    [4] 卢道明. 等距离耦合腔系统中的非局域性.  , 2016, 65(10): 100301. doi: 10.7498/aps.65.100301
    [5] 熊芳, 冯晓强, 谭磊. 双光子过程耗散耦合腔阵列中的量子相变.  , 2016, 65(4): 044205. doi: 10.7498/aps.65.044205
    [6] 农春选, 李明, 陈翠玲. Ξ型三能级原子玻色-爱因斯坦凝聚体单模光场系统中双模原子激光的压缩性质.  , 2014, 63(4): 043202. doi: 10.7498/aps.63.043202
    [7] 鲍佳, 谭磊. 失谐对耗散耦合腔阵列体系超流-绝缘相变的影响.  , 2014, 63(8): 084201. doi: 10.7498/aps.63.084201
    [8] 卢道明. 三能级原子与耦合腔相互作用系统中的纠缠特性.  , 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [9] 卢道明. 型和V型三能级原子与耦合腔相互作用系统中的纠缠特性.  , 2011, 60(12): 120303. doi: 10.7498/aps.60.120303
    [10] 柏江湘, 米贤武, 李德俊. 光学微盘腔与三能级量子点系统中的模耦合研究.  , 2010, 59(9): 6205-6212. doi: 10.7498/aps.59.6205
    [11] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究.  , 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [12] 周青春. 理想腔中具有正交偶极矩的级联型三能级原子发射谱.  , 2006, 55(9): 4618-4623. doi: 10.7498/aps.55.4618
    [13] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获.  , 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
    [14] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明.  , 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [15] 高云峰, 冯 健, 王继锁. 级联三能级原子与单模场相互作用下的腔场谱.  , 2004, 53(8): 2563-2568. doi: 10.7498/aps.53.2563
    [16] 黄春佳, 贺慧勇, 孔凡志, 方家元. 光场与V型三能级原子依赖强度耦合系统场熵的演化特性.  , 2004, 53(8): 2539-2543. doi: 10.7498/aps.53.2539
    [17] 梁文青, 储开芹, 张智明, 谢绳武. 超冷V型三能级原子注入的微波激射:原子相干性对腔场光子统计的影响.  , 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
    [18] 陶向阳, 刘金明, 刘三秋, 傅传鸿. Kerr 介质中三能级原子与双模场非共振相互作用的量子统计性质.  , 2000, 49(8): 1464-1470. doi: 10.7498/aps.49.1464
    [19] 谢双媛, 羊亚平, 吴 翔. 三维光子晶体中三能级原子的自发发射.  , 2000, 49(8): 1478-1483. doi: 10.7498/aps.49.1478
    [20] 刘三秋, 郭 琴, 陶向阳, 付传鸿. 非旋波近似下级联型三能级原子与腔场相互作用的量子动力学性质.  , 1998, 47(9): 1481-1488. doi: 10.7498/aps.47.1481
计量
  • 文章访问数:  5410
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-21
  • 修回日期:  2017-04-13
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map