搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种有效提高无标度网络负载容量的管理策略

蔡君 余顺争

引用本文:
Citation:

一种有效提高无标度网络负载容量的管理策略

蔡君, 余顺争

An efficient management strategy for enhancing traffic capacity in scale-free networks

Cai Jun, Yu Shun-Zheng
PDF
导出引用
  • 现有研究表明明显的社团结构会显著降低网络的传输性能. 本文基于网络邻接矩阵的特征谱定义了链路对网络社团特性的贡献度, 提出一种通过逻辑关闭或删除对网络社团特性贡献度大的链路以提高网络传输性能的拓扑管理策略, 即社团弱化控制策略(CWCS 策略). 在具有社团结构的无标度网络上分别进行了基于全局最短路径路由和局部路由的仿真实验, 并与关闭连接度大的节点之间链路的HDF 策略进行了比较. 仿真实验结果显示, 在全局最短路径路由策略下, CWCS策略能更有效地提高网络负载容量, 并且网络的平均传输时间增加的幅度变小. 在局部路由策略下, 当调控参数02, 对网络负载容量的提升优于HDF策略.
    Previous research has shown that the community structure of the network well significantly affect information transmission, and the obvious community structure will significantly reduce the network transmission performance. To address the problem, first we define the link importance to communities, which is based on the spectrum of network adjacency matrix. Then we propose a topological management strategy called community weaken control strategy (CWCS) to enhance traffic capacity, which weakens the community structures by logically closing or cutting some links with great link importance. We implement the scheme in both a global shortest-path routing strategy and local routing strategy, and compare it with the previous scheme HDF that removes the links among hub nodes. The simulation results show that the traffic capacity can be greatly enhanced and the average transport time is effectively reduced under the shortest path routing strategy. Under the local routing strategy, the traffic capacity can also be greatly enhanced when the tunable parameter lies in a range from 0 and 2.
    • 基金项目: 国家自然科学基金(批准号: 60970146, 61272381, 61202271), 国家高技术研究发展计划 (批准号: 2007AA01Z449) 和国家自然科学基金-广东联合基金重点项目 (批准号: U0735002) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60970146, 61272381, 61202271), the National High Technology Research and from Development Program of China (Grant No. 2007AA01Z449), and the Key Program of NSFC-Guangdong Joint Funds(Grant No. U0735002).
    [1]

    Newman M E J 2004 Eur. Phys. J. B 38 321

    [2]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D 2006 Phys. Rep. 424 175

    [3]

    Zhou T, Bai W J, Wang B H, Liu Z J, Yan G 2005 Physics 34 31 (in Chinese) [周涛, 柏文洁, 汪秉宏, 刘之景, 严钢 2005 物理 34 31]

    [4]

    Chen H L, Liu Z X, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin. 58 6068 (in Chinese) [陈华良, 刘忠信, 陈增强, 袁著祉 2009 58 6068]

    [5]

    Li T, Pei W J, Wang S P 2009 Acta Phys. Sin. 58 5903 (in Chinese) [李涛, 斐文江, 王少平 2009 58 5903]

    [6]

    Pu C L, Zhou S Y, Wang K 2012 Physical A 391 866

    [7]

    Leon D, Alex A, Guilera A 2008 Phys. Rev. E 77 036103

    [8]

    Shao F, Jiang G P 2011 Acta Phys. Sin. 60 078902 (in Chinese) [邵斐, 蒋国平 2009 60 078902]

    [9]

    Zoltán T, Kevin E 2004 Nature 428 716

    [10]

    Arenas A, Díaz-Guilera A, Guimerá R 2001 Phys. Rev. Lett. 86 3196

    [11]

    Zhao L, Lai Y C, Park K, Ye N 2005 Phys. Rev. E 71 026125

    [12]

    Guimerá R, Díaz-Guilera A, Vega-Redondo A 2002 Phys. Rev. Lett. 89 248701

    [13]

    Liu Z, Hu M B, Wang W X, Wu Q S 2007 Phys. Rev. E 76 037101

    [14]

    Zhang G Q, Wang D, Li G J 2007 Phys. Rev. E 76 017101

    [15]

    Zhou M Y, Cai S M, Fu Z Q 2012 Physica A 391 1887

    [16]

    Guimerá R, Arenasb A, Díaz-Guilera A 2001 Physica A 299 247

    [17]

    Yin C Y, Wang B H, Wang W X 2006 Phys. Lett. A 351 220

    [18]

    Newman M E J 2004 Phys. Rev. E 69 026113

    [19]

    Guimerá R, Amaral L 2005 Nature 433 895

    [20]

    Chanuhan S, Girvan M, Ott E 2009 Phys. Rev. E 80 056114

    [21]

    Fortunato S 2010 Phys. Rep. 486 75

    [22]

    Yan G, Fu Z Q, Ren J 2007 Phys. Rev. E 75 016108

    [23]

    Wang W X, Wang B H, Yin C Y 2007 Phys. Rev. E 73 026111

    [24]

    Newman M E J 2010 Networks: An Introduction (Oxford UK: Oxford University Press) p346

  • [1]

    Newman M E J 2004 Eur. Phys. J. B 38 321

    [2]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D 2006 Phys. Rep. 424 175

    [3]

    Zhou T, Bai W J, Wang B H, Liu Z J, Yan G 2005 Physics 34 31 (in Chinese) [周涛, 柏文洁, 汪秉宏, 刘之景, 严钢 2005 物理 34 31]

    [4]

    Chen H L, Liu Z X, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin. 58 6068 (in Chinese) [陈华良, 刘忠信, 陈增强, 袁著祉 2009 58 6068]

    [5]

    Li T, Pei W J, Wang S P 2009 Acta Phys. Sin. 58 5903 (in Chinese) [李涛, 斐文江, 王少平 2009 58 5903]

    [6]

    Pu C L, Zhou S Y, Wang K 2012 Physical A 391 866

    [7]

    Leon D, Alex A, Guilera A 2008 Phys. Rev. E 77 036103

    [8]

    Shao F, Jiang G P 2011 Acta Phys. Sin. 60 078902 (in Chinese) [邵斐, 蒋国平 2009 60 078902]

    [9]

    Zoltán T, Kevin E 2004 Nature 428 716

    [10]

    Arenas A, Díaz-Guilera A, Guimerá R 2001 Phys. Rev. Lett. 86 3196

    [11]

    Zhao L, Lai Y C, Park K, Ye N 2005 Phys. Rev. E 71 026125

    [12]

    Guimerá R, Díaz-Guilera A, Vega-Redondo A 2002 Phys. Rev. Lett. 89 248701

    [13]

    Liu Z, Hu M B, Wang W X, Wu Q S 2007 Phys. Rev. E 76 037101

    [14]

    Zhang G Q, Wang D, Li G J 2007 Phys. Rev. E 76 017101

    [15]

    Zhou M Y, Cai S M, Fu Z Q 2012 Physica A 391 1887

    [16]

    Guimerá R, Arenasb A, Díaz-Guilera A 2001 Physica A 299 247

    [17]

    Yin C Y, Wang B H, Wang W X 2006 Phys. Lett. A 351 220

    [18]

    Newman M E J 2004 Phys. Rev. E 69 026113

    [19]

    Guimerá R, Amaral L 2005 Nature 433 895

    [20]

    Chanuhan S, Girvan M, Ott E 2009 Phys. Rev. E 80 056114

    [21]

    Fortunato S 2010 Phys. Rep. 486 75

    [22]

    Yan G, Fu Z Q, Ren J 2007 Phys. Rev. E 75 016108

    [23]

    Wang W X, Wang B H, Yin C Y 2007 Phys. Rev. E 73 026111

    [24]

    Newman M E J 2010 Networks: An Introduction (Oxford UK: Oxford University Press) p346

  • [1] 马金龙, 张俊峰, 张冬雯, 张红斌. 基于通信序列熵的复杂网络传输容量.  , 2021, 70(7): 078902. doi: 10.7498/aps.70.20201300
    [2] 谭志中, 谭震. 一类任意m×n阶矩形网络的电特性.  , 2020, 69(2): 020502. doi: 10.7498/aps.69.20191303
    [3] 丁连红, 孙斌, 时鹏. 知识图谱复杂网络特性的实证研究与分析.  , 2019, 68(12): 128902. doi: 10.7498/aps.68.20190106
    [4] 王兴元, 赵仲祥. 基于节点间依赖度的社团结构划分方法.  , 2014, 63(17): 178901. doi: 10.7498/aps.63.178901
    [5] 段东立, 武小悦. 基于可调负载重分配的无标度网络连锁效应分析.  , 2014, 63(3): 030501. doi: 10.7498/aps.63.030501
    [6] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计.  , 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [7] 丁益民, 丁卓, 杨昌平. 基于社团结构的城市地铁网络模型研究.  , 2013, 62(9): 098901. doi: 10.7498/aps.62.098901
    [8] 周漩, 杨帆, 张凤鸣, 周卫平, 邹伟. 复杂网络系统拓扑连接优化控制方法.  , 2013, 62(15): 150201. doi: 10.7498/aps.62.150201
    [9] 王亚奇, 杨晓元. 一种无线传感器网络簇间拓扑演化模型及其免疫研究.  , 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [10] 袁超, 柴毅. 基于簇相似度的网络社团结构探测算法.  , 2012, 61(21): 218901. doi: 10.7498/aps.61.218901
    [11] 郑啸, 陈建平, 邵佳丽, 别立东. 基于复杂网络理论的北京公交网络拓扑性质分析.  , 2012, 61(19): 190510. doi: 10.7498/aps.61.190510
    [12] 张聪, 沈惠璋, 李峰, 杨何群. 复杂网络中社团结构发现的多分辨率密度模块度.  , 2012, 61(14): 148902. doi: 10.7498/aps.61.148902
    [13] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计.  , 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [14] 吕天阳, 谢文艳, 郑纬民, 朴秀峰. 加权复杂网络社团的评价指标及其发现算法分析.  , 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [15] 崔爱香, 傅彦, 尚明生, 陈端兵, 周涛. 复杂网络局部结构的涌现:共同邻居驱动网络演化.  , 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [16] 邵斐, 蒋国平. 基于社团结构的负载传输优化策略研究.  , 2011, 60(7): 078902. doi: 10.7498/aps.60.078902
    [17] 陈卫东, 徐华, 郭琦. 国际石油价格复杂网络的动力学拓扑性质.  , 2010, 59(7): 4514-4523. doi: 10.7498/aps.59.4514
    [18] 李涛, 裴文江, 王少平. 无标度复杂网络负载传输优化策略.  , 2009, 58(9): 5903-5910. doi: 10.7498/aps.58.5903
    [19] 高忠科, 金宁德. 两相流流型复杂网络社团结构及其统计特性.  , 2008, 57(11): 6909-6920. doi: 10.7498/aps.57.6909
    [20] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究.  , 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
计量
  • 文章访问数:  6610
  • PDF下载量:  684
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-20
  • 修回日期:  2012-10-25
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map