-
深入研究了负氢离子输运及能量沉积机理, 采用全三维蒙特卡罗碰撞方法处理负氢离子与其他粒子间的碰撞, 运用CHIPIC软件平台下的PIC (particle-incell) 技术处理粒子的储存和磁场约束作用, 在此基础上, 对JAEA 10 A离子源中体积产生负氢离子输运和散射情景进行了模拟, 并分析和讨论了不同气压和过滤磁场对体积产生负氢离子传输和引出特性的影响. 结果显示: 气压越大, 体积产生负氢离子碰撞损耗越大, 体积产生负氢离子达到器壁的数量和被引出的数量都越小;低气压放电环境中, 过滤磁场对体积负氢离子的引出影响更强烈, 且过滤磁场越大, 引出效果越差.In this paper, the negative hydrogen ion transportation and energy deposition mechanism are investigated deeply, and the collisions between negative hydrogen ions with other particles are treated by the three-dimensional Monte Carlo method. The storage of the particles and the constraint function of magnetic field are disposed by particle-in-cell (PIC) technology under the CHIPIC software. Based on this, negative hydrogen ion transportation and scattering case in the JAERI 10 A multicusp ion source are simulated. The influences of pressure and filter magnetic field on negative hydrogen ion transportation and extraction characteristics are analyzed and discussed. Results show that the greater the pressure, the bigger the collision loss of the volume produced negative hydrogen ions, and also the smaller the number of negative hydrogen ions reaching the wall and extracted is; in the lower discharge case, the more intensively the negative hydrogen ion extraction is influenced by the filter magnetic field, and also the stronger the filter magnetic field, the worse the extraction effectiveness is.
[1] Terasaki R, Fujino I, Hatayama A, Mizuno T, Inoue T 2010 Rev. Sci. Instrum. 81 02A703
[2] Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G 2012 Acta Phys. Sin. 61 045204 [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲 2012 61 045204]
[3] Yang C, Liu D G, Wang X Q, Wang X M, Xia M Z, Peng K 2012 Acta Phys. Sin. 61 105206 [杨超, 刘大刚, 王学琼, 王小敏, 夏蒙重, 彭凯 2012 61 105206]
[4] Yang C, Liu D G, Chen Y, Xia M Z, Wang X Q, Wang X M 2012 Acta Phys. Sin. 61 135203 [杨超, 刘大刚, 陈 颖, 夏蒙重, 王学琼, 王小敏 2012 61 135203]
[5] Gou X F, Yang Y, Zheng X J 2004 Appl. Math. Mech. 25 271 [苟晓凡, 杨勇, 郑晓静 2004 应用数学和力学 25 271]
[6] Chiaming W, Tungyou L, Russel C, Bruce I C, Andris M D 2008 J. Comput. Phys. 227 4308
[7] Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971
[8] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179
[9] Kameyama N, Matsushita D, Koga S, Terasaki R, Hatayama A 2011 Second International Symposium on Ions, Beams and Sources Takayama, Japan. November 16-19, 2010 p39
[10] Sakurabayashi T, Hatayama A, Miyamoto K, Ogasawara M, Bacal M 2002 Rev. Sci. Instrum. 73 1048
[11] Fukumasa O, Nishida R 2006 Nuclear Fusion 46 S275
-
[1] Terasaki R, Fujino I, Hatayama A, Mizuno T, Inoue T 2010 Rev. Sci. Instrum. 81 02A703
[2] Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G 2012 Acta Phys. Sin. 61 045204 [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲 2012 61 045204]
[3] Yang C, Liu D G, Wang X Q, Wang X M, Xia M Z, Peng K 2012 Acta Phys. Sin. 61 105206 [杨超, 刘大刚, 王学琼, 王小敏, 夏蒙重, 彭凯 2012 61 105206]
[4] Yang C, Liu D G, Chen Y, Xia M Z, Wang X Q, Wang X M 2012 Acta Phys. Sin. 61 135203 [杨超, 刘大刚, 陈 颖, 夏蒙重, 王学琼, 王小敏 2012 61 135203]
[5] Gou X F, Yang Y, Zheng X J 2004 Appl. Math. Mech. 25 271 [苟晓凡, 杨勇, 郑晓静 2004 应用数学和力学 25 271]
[6] Chiaming W, Tungyou L, Russel C, Bruce I C, Andris M D 2008 J. Comput. Phys. 227 4308
[7] Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971
[8] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179
[9] Kameyama N, Matsushita D, Koga S, Terasaki R, Hatayama A 2011 Second International Symposium on Ions, Beams and Sources Takayama, Japan. November 16-19, 2010 p39
[10] Sakurabayashi T, Hatayama A, Miyamoto K, Ogasawara M, Bacal M 2002 Rev. Sci. Instrum. 73 1048
[11] Fukumasa O, Nishida R 2006 Nuclear Fusion 46 S275
计量
- 文章访问数: 7954
- PDF下载量: 441
- 被引次数: 0