-
利用密度泛函理论平面波的赝势方法, 对Be、Ca掺杂纤锌矿ZnO的BexZn1-xO, CayZn1-yO三元合金和BexCayZn1-x-yO四元合金的晶格常数、能带特性和形成能进行计算, 结果表明:BexZn1-xO晶格常数随Be掺杂量的增大线性减小, 但CayZn1-yO晶格常数随Ca掺杂量的增大而增大. BexZn1-xO和CayZn1-yO能带的价带顶都由O 2p态电子占据, 导带底由Zn 4s态电子占据, 其能隙随Be或Ca掺杂量的增大而变宽. 由Be和Ca共掺ZnO得到的Be0.125Ca0.125Zn0.75O四元合金, 其晶格常数与ZnO相匹配, 能隙比ZnO大, 稳定性优于Be0.25Ca0.125Zn0.625O和Be0.5Zn0.5O合金, Be0.125Ca0.125Zn0.75O/ZnO异质结构适合制作高质量ZnO基器件.
-
关键词:
- 密度泛函理论 /
- BexCayZn1-x-yO /
- 晶格常数 /
- 能带特性
The lattice constants, energy band properties and formation energies of BexZn1-xO, CayZn1-yO and BexCayZn1-x-yO alloys of Be and Ca doped wurtzite ZnO alloys are calculated by the plan-wave pseudopotential method with GGA in density functional theory (DFT). The theoretical results show the lattice constants of BexZn1-xO alloy decrease with Be content increasing, which is contrary to the scenario of CayZn1-yO alloy. For the energy band properties of Be_xZn1-xO and CayZn1-yO alloys, the valence band maxima (VBM) are determined by O 2p states and the conduction band minima (CBM) is occupied by Zn 4s states, and their band gaps are broadened when Be or Ca content is increased. The lattice constant of Be0.125Ca0.125Zn0.75O alloy of Be and Ca co-doped ZnO is matched with that of ZnO and its energy bandgap is greater than that of ZnO, so Be0.125Ca0.125Zn0.75O /ZnO structure is suitable for high-quality ZnO based device. In addition, the stability of Be0.125Ca0.125Zn0.75O alloy is also analysed.-
Keywords:
- density-function theory (DFT) /
- BexCayZn1-x-yO /
- lattice constants /
- energy band properties
[1] Service R F 1997 Science 276 5314
[2] Özgür Ü, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301
[3] Aoki T, Hat anaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257
[4] Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101
[5] Jin X L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮 2006 55 4809]
[6] Nazir S, Ikram N, Amin B, Tanveer M, Shaukat A, Saeed A 2009 J. Phys. and Chem. of Solids 70 874
[7] Ghosh R, Basak D 2007 J. Appl. Phys. 101 113111
[8] Kong J F, Shen W Z, Zhang Y W, Yang C, Li X M 2008 Appl. Phys. Lett. 92 191910
[9] Tang C, Li X M, Gu Y F, Yu W D, Gao X D, Zhang Y W 2008 Appl. Phys. Lett. 93 112114
[10] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H 1998 Appl. Phys. Lett. 72 2466
[11] Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N 2007 Solid State Communications 144 5
[12] Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim J W 2006 Appl. Phys. Lett. 88 052103
[13] Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104
[14] Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标2009 58 6446]
[15] Ding S F, Fan G H, Li S T, Chen K, Xiao B 2007 Physica B 394 127
[16] Su X, Si P, Hou Q Y, Kong X L, Cheng W 2009 Physica B 404 1794
[17] Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys: Condens. Matter 20 235221
[18] Xiong Z H, Shun Z H, Wan Q X, Li D M, Liu G D 2008 Acta Photonica Sinica 37 19
[19] Huang H C, Gilmer G H, Tomas D 1998 J. Appl. Phys. 84 3636
[20] Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407
[21] Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[24] Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768
[25] Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐 鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜2008 57 1066]
[26] Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212
[27] Wang Z J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 2992
[28] Han M S, Kim J H., Jeonga T S, Parka J M, Youna C J, Leemb J H, Ryu Y R 2007 Journal of Crystal Growth 303 506
[29] Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 7806]
[30] Wei S H, Zunger A 1988 Phys. Rev.B 37 8958
[31] Xia J B, Zhu B F, Huang K 1995 Semiconductor Superlattice Physics (Shanghai: Shanghai Science and Technology Press) p19 (in Chinese) [夏建白, 朱邦芬, 黄昆 1995 半导体超晶格物理 (上海: 上海科学技术出版社) 第19页]
[32] Xu X F, Shao X H 2009 Acta Phys. Sin. 58 1908 (in Chinese) [徐新发, 邵晓红 2009 58 1908]
[33] Paiva R de, Alves J L A, Nogueira R A, Oliveira C de, Alves H W L, Scolfaro L M R, Leite J R 2002 Mater. Sci. Eng. B 93 2
-
[1] Service R F 1997 Science 276 5314
[2] Özgür Ü, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301
[3] Aoki T, Hat anaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257
[4] Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101
[5] Jin X L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮 2006 55 4809]
[6] Nazir S, Ikram N, Amin B, Tanveer M, Shaukat A, Saeed A 2009 J. Phys. and Chem. of Solids 70 874
[7] Ghosh R, Basak D 2007 J. Appl. Phys. 101 113111
[8] Kong J F, Shen W Z, Zhang Y W, Yang C, Li X M 2008 Appl. Phys. Lett. 92 191910
[9] Tang C, Li X M, Gu Y F, Yu W D, Gao X D, Zhang Y W 2008 Appl. Phys. Lett. 93 112114
[10] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H 1998 Appl. Phys. Lett. 72 2466
[11] Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N 2007 Solid State Communications 144 5
[12] Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim J W 2006 Appl. Phys. Lett. 88 052103
[13] Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104
[14] Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标2009 58 6446]
[15] Ding S F, Fan G H, Li S T, Chen K, Xiao B 2007 Physica B 394 127
[16] Su X, Si P, Hou Q Y, Kong X L, Cheng W 2009 Physica B 404 1794
[17] Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys: Condens. Matter 20 235221
[18] Xiong Z H, Shun Z H, Wan Q X, Li D M, Liu G D 2008 Acta Photonica Sinica 37 19
[19] Huang H C, Gilmer G H, Tomas D 1998 J. Appl. Phys. 84 3636
[20] Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407
[21] Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[24] Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768
[25] Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐 鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜2008 57 1066]
[26] Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212
[27] Wang Z J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 2992
[28] Han M S, Kim J H., Jeonga T S, Parka J M, Youna C J, Leemb J H, Ryu Y R 2007 Journal of Crystal Growth 303 506
[29] Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 7806]
[30] Wei S H, Zunger A 1988 Phys. Rev.B 37 8958
[31] Xia J B, Zhu B F, Huang K 1995 Semiconductor Superlattice Physics (Shanghai: Shanghai Science and Technology Press) p19 (in Chinese) [夏建白, 朱邦芬, 黄昆 1995 半导体超晶格物理 (上海: 上海科学技术出版社) 第19页]
[32] Xu X F, Shao X H 2009 Acta Phys. Sin. 58 1908 (in Chinese) [徐新发, 邵晓红 2009 58 1908]
[33] Paiva R de, Alves J L A, Nogueira R A, Oliveira C de, Alves H W L, Scolfaro L M R, Leite J R 2002 Mater. Sci. Eng. B 93 2
计量
- 文章访问数: 8941
- PDF下载量: 1121
- 被引次数: 0