搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Be和Ca掺杂纤锌矿ZnO的晶格常数与能带特性研究

郑树文 范广涵 章勇 何苗 李述体 张涛

引用本文:
Citation:

Be和Ca掺杂纤锌矿ZnO的晶格常数与能带特性研究

郑树文, 范广涵, 章勇, 何苗, 李述体, 张涛

Study on the lattice constants and energy band properties of Be and Ca doped wurtzite ZnO

Zheng Shu-Wen, Fan Guang-Han, Zhang Yong, He Miao, Li Shu-Ti, Zhang Tao
PDF
导出引用
  • 利用密度泛函理论平面波的赝势方法, 对Be、Ca掺杂纤锌矿ZnO的BexZn1-xO, CayZn1-yO三元合金和BexCayZn1-x-yO四元合金的晶格常数、能带特性和形成能进行计算, 结果表明:BexZn1-xO晶格常数随Be掺杂量的增大线性减小, 但CayZn1-yO晶格常数随Ca掺杂量的增大而增大. BexZn1-xO和CayZn1-yO能带的价带顶都由O 2p态电子占据, 导带底由Zn 4s态电子占据, 其能隙随Be或Ca掺杂量的增大而变宽. 由Be和Ca共掺ZnO得到的Be0.125Ca0.125Zn0.75O四元合金, 其晶格常数与ZnO相匹配, 能隙比ZnO大, 稳定性优于Be0.25Ca0.125Zn0.625O和Be0.5Zn0.5O合金, Be0.125Ca0.125Zn0.75O/ZnO异质结构适合制作高质量ZnO基器件.
    The lattice constants, energy band properties and formation energies of BexZn1-xO, CayZn1-yO and BexCayZn1-x-yO alloys of Be and Ca doped wurtzite ZnO alloys are calculated by the plan-wave pseudopotential method with GGA in density functional theory (DFT). The theoretical results show the lattice constants of BexZn1-xO alloy decrease with Be content increasing, which is contrary to the scenario of CayZn1-yO alloy. For the energy band properties of Be_xZn1-xO and CayZn1-yO alloys, the valence band maxima (VBM) are determined by O 2p states and the conduction band minima (CBM) is occupied by Zn 4s states, and their band gaps are broadened when Be or Ca content is increased. The lattice constant of Be0.125Ca0.125Zn0.75O alloy of Be and Ca co-doped ZnO is matched with that of ZnO and its energy bandgap is greater than that of ZnO, so Be0.125Ca0.125Zn0.75O /ZnO structure is suitable for high-quality ZnO based device. In addition, the stability of Be0.125Ca0.125Zn0.75O alloy is also analysed.
    • 基金项目: 国家自然科学基金(批准号: 61176043)和广东省战略性新兴产业专项资金(批准号: 2010A081002005, 2011A081301003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176043), the Special Funds for Provincial Strategic and Emerging Industries projects of Guangdong (Grant Nos. 2010A081002005, 2011A081301003).
    [1]

    Service R F 1997 Science 276 5314

    [2]

    Özgür Ü, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301

    [3]

    Aoki T, Hat anaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [4]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [5]

    Jin X L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮 2006 55 4809]

    [6]

    Nazir S, Ikram N, Amin B, Tanveer M, Shaukat A, Saeed A 2009 J. Phys. and Chem. of Solids 70 874

    [7]

    Ghosh R, Basak D 2007 J. Appl. Phys. 101 113111

    [8]

    Kong J F, Shen W Z, Zhang Y W, Yang C, Li X M 2008 Appl. Phys. Lett. 92 191910

    [9]

    Tang C, Li X M, Gu Y F, Yu W D, Gao X D, Zhang Y W 2008 Appl. Phys. Lett. 93 112114

    [10]

    Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H 1998 Appl. Phys. Lett. 72 2466

    [11]

    Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N 2007 Solid State Communications 144 5

    [12]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim J W 2006 Appl. Phys. Lett. 88 052103

    [13]

    Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104

    [14]

    Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标2009 58 6446]

    [15]

    Ding S F, Fan G H, Li S T, Chen K, Xiao B 2007 Physica B 394 127

    [16]

    Su X, Si P, Hou Q Y, Kong X L, Cheng W 2009 Physica B 404 1794

    [17]

    Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys: Condens. Matter 20 235221

    [18]

    Xiong Z H, Shun Z H, Wan Q X, Li D M, Liu G D 2008 Acta Photonica Sinica 37 19

    [19]

    Huang H C, Gilmer G H, Tomas D 1998 J. Appl. Phys. 84 3636

    [20]

    Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407

    [21]

    Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [24]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [25]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐 鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜2008 57 1066]

    [26]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [27]

    Wang Z J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 2992

    [28]

    Han M S, Kim J H., Jeonga T S, Parka J M, Youna C J, Leemb J H, Ryu Y R 2007 Journal of Crystal Growth 303 506

    [29]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 7806]

    [30]

    Wei S H, Zunger A 1988 Phys. Rev.B 37 8958

    [31]

    Xia J B, Zhu B F, Huang K 1995 Semiconductor Superlattice Physics (Shanghai: Shanghai Science and Technology Press) p19 (in Chinese) [夏建白, 朱邦芬, 黄昆 1995 半导体超晶格物理 (上海: 上海科学技术出版社) 第19页]

    [32]

    Xu X F, Shao X H 2009 Acta Phys. Sin. 58 1908 (in Chinese) [徐新发, 邵晓红 2009 58 1908]

    [33]

    Paiva R de, Alves J L A, Nogueira R A, Oliveira C de, Alves H W L, Scolfaro L M R, Leite J R 2002 Mater. Sci. Eng. B 93 2

  • [1]

    Service R F 1997 Science 276 5314

    [2]

    Özgür Ü, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301

    [3]

    Aoki T, Hat anaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [4]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [5]

    Jin X L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮 2006 55 4809]

    [6]

    Nazir S, Ikram N, Amin B, Tanveer M, Shaukat A, Saeed A 2009 J. Phys. and Chem. of Solids 70 874

    [7]

    Ghosh R, Basak D 2007 J. Appl. Phys. 101 113111

    [8]

    Kong J F, Shen W Z, Zhang Y W, Yang C, Li X M 2008 Appl. Phys. Lett. 92 191910

    [9]

    Tang C, Li X M, Gu Y F, Yu W D, Gao X D, Zhang Y W 2008 Appl. Phys. Lett. 93 112114

    [10]

    Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H 1998 Appl. Phys. Lett. 72 2466

    [11]

    Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N 2007 Solid State Communications 144 5

    [12]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim J W 2006 Appl. Phys. Lett. 88 052103

    [13]

    Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104

    [14]

    Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标2009 58 6446]

    [15]

    Ding S F, Fan G H, Li S T, Chen K, Xiao B 2007 Physica B 394 127

    [16]

    Su X, Si P, Hou Q Y, Kong X L, Cheng W 2009 Physica B 404 1794

    [17]

    Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys: Condens. Matter 20 235221

    [18]

    Xiong Z H, Shun Z H, Wan Q X, Li D M, Liu G D 2008 Acta Photonica Sinica 37 19

    [19]

    Huang H C, Gilmer G H, Tomas D 1998 J. Appl. Phys. 84 3636

    [20]

    Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407

    [21]

    Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [24]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [25]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐 鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜2008 57 1066]

    [26]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [27]

    Wang Z J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 2992

    [28]

    Han M S, Kim J H., Jeonga T S, Parka J M, Youna C J, Leemb J H, Ryu Y R 2007 Journal of Crystal Growth 303 506

    [29]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 7806 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 7806]

    [30]

    Wei S H, Zunger A 1988 Phys. Rev.B 37 8958

    [31]

    Xia J B, Zhu B F, Huang K 1995 Semiconductor Superlattice Physics (Shanghai: Shanghai Science and Technology Press) p19 (in Chinese) [夏建白, 朱邦芬, 黄昆 1995 半导体超晶格物理 (上海: 上海科学技术出版社) 第19页]

    [32]

    Xu X F, Shao X H 2009 Acta Phys. Sin. 58 1908 (in Chinese) [徐新发, 邵晓红 2009 58 1908]

    [33]

    Paiva R de, Alves J L A, Nogueira R A, Oliveira C de, Alves H W L, Scolfaro L M R, Leite J R 2002 Mater. Sci. Eng. B 93 2

  • [1] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律.  , 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究.  , 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [3] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [4] 陈宣, 袁勇波, 邓开明, 肖传云, 陆瑞锋, 阚二军. MnxSny(x=2,3,4; y=18,24,30)团簇几何结构的密度泛函研究.  , 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [5] 苏少坚, 成步文, 薛春来, 张东亮, 张广泽, 王启明. GeSn合金的晶格常数对Vegard定律的偏离.  , 2012, 61(17): 176104. doi: 10.7498/aps.61.176104
    [6] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [7] 郑树文, 范广涵, 何苗, 姚光锐, 陈峻, 贺龙飞. 纤锌矿BeO掺Cd的电子结构与能带特性研究.  , 2012, 61(17): 177102. doi: 10.7498/aps.61.177102
    [8] 郑树文, 范广涵, 李述体, 张涛, 苏晨. Be1-xMgxO合金的能带特性与相结构稳定性研究.  , 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [9] 魏洪源, 熊晓玲, 刘国平, 罗顺忠. TiO基态 (X 3 Δr) 的势能函数与光谱常数.  , 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [10] 尚杰, 张辉, 曹明刚, 张鹏翔. 氧压对Ba0.6Sr0.4TiO3薄膜晶格常数的影响及BaTiO3/Ba0.6Sr0.4TiO3超晶格的制备.  , 2011, 60(1): 016802. doi: 10.7498/aps.60.016802
    [11] 孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜. 密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用.  , 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [12] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究.  , 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [13] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究.  , 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [14] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [15] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究.  , 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [16] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [18] 魏智强, 夏天东, 王 君, 吴志国, 闫鹏勋. 纳米镍粉体的晶格膨胀.  , 2007, 56(2): 1004-1008. doi: 10.7498/aps.56.1004
    [19] 杜 泉, 王 玲, 谌晓洪, 高 涛. VOn±(n=0,1,2)的势能函数与光谱常数研究.  , 2006, 55(12): 6308-6314. doi: 10.7498/aps.55.6308
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  8941
  • PDF下载量:  1121
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-05
  • 修回日期:  2012-06-07
  • 刊出日期:  2012-11-05

/

返回文章
返回
Baidu
map