搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤锌矿BeO掺Cd的电子结构与能带特性研究

郑树文 范广涵 何苗 姚光锐 陈峻 贺龙飞

引用本文:
Citation:

纤锌矿BeO掺Cd的电子结构与能带特性研究

郑树文, 范广涵, 何苗, 姚光锐, 陈峻, 贺龙飞

Study on the electronic structures and energy band properties of Cd-doped wurtzite BeO

Zheng Shu-Wen, Fan Guang-Han, He Miao, Yao Guang-Rui, Chen Jun, He Long-Fei
PDF
导出引用
  • 采用基于密度泛函理论平面波赝势方法, 对纤锌矿BeO掺Cd的Be1-xCdxO合金进行电子结构与能带特性研究. 结果表明: Be1-xCdxO的价带顶始终由O 2p电子态决定, 而导带底由Be 2s和Cd 5s的电子态决定.随着Be1-xCdxO合金的Cd掺杂量增加, Cd 4d与O 2p的排斥效应逐渐加强, 同时Be1-xCdxO的带隙逐渐变小, 出现直接间接直接的带隙转变. 为了使理论值与实验值相一致, 对Be1-xCdxO带隙进行修正, 并分析了纤锌矿BeO-ZnO-CdO三元合金的带隙和弯曲系数与晶格常数的关系.
    The electronic structures and energy band properties of the Cd-doped wurtzite BeO are investigated by plan-wave pseudopotential method with the generalized gradient approximation in the frame of density functional theory. The theoretical results show that the valence band maximum is determined by O 2p states and the conduction band minimum is occupied by Cd 5s and Be 2s orbitals based on the total density of states and partial density of states of Be1-xCdxO alloy. With the Cd content x of Be1-xCdxO increasing, the repulsion effect between Cd 4d and O 2p states is more enhanced and the bandgap of Be1-xCdxO is reduced. At the same time, the bandgap undergoes the direct-indirect-direct transition. In order to obtain the theoretical values in accord with the experimental results, the bandgaps of Be1-xCdxO are corrected. Moreover, the relations among energy bandgap, bowing parameter and lattice constant of the wurtzite BeO-ZnO-CdO ternary alloy are analyzed.
    • 基金项目: 国家自然科学基金(批准号: 61176043)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176043).
    [1]

    Wdowik U D 2010 J. Phys: Condens. Matter 22 045404

    [2]

    Liu X L, Ren Y, Liang L W, Xu H 2010 Acta Phys. Chim. Sin. 26 2298 (in Chinese) [刘小良, 任意, 梁亮文, 徐慧 2010 物理化学学报 26 2298]

    [3]

    Wang Z J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 2992

    [4]

    Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标 2009 58 6446]

    [5]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim W J 2006 Appl. Phys. Lett. 88 052103

    [6]

    Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104

    [7]

    Ding S F, Fan G H, Li S T, Chen K, Xiao B 2007 Physical B 394 127

    [8]

    Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N 2007 Solid State Communications 144 5

    [9]

    Ishihara J, Nakamura A, Shigemori S, Aoki T, Temmyo J 2006 Appl. Phys. Lett. 89 091914

    [10]

    Sun H Q, Ding S F, Wang Y T, Deng B, Fan G H 2008 Acta Phys. Chim. Sin. 24 1233 (in Chinese) [孙慧卿, 丁少峰, 王雨田, 邓贝, 范广涵 2008 物理化学学报 24 1233]

    [11]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [12]

    Huang H C, Gilmer G H, Tomas Diaz de la Rubia 1998 J. Appl. Phys. 84 3636

    [13]

    Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [14]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [16]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [17]

    Amrani Bouhalouane, Hassan Fouad El Haj, Akbarzadeh Hadi 2007 J. Phys: Condens. Matter 19 436216

    [18]

    Boettger J C, Wills J M 1996 Phys. Rev. B 54 8965

    [19]

    Chang K J, Froyen S, Cohen M L 1983 J. Phys. C 16 3475

    [20]

    Jephcoat A P, Hemley R J, Mao H K, Cohen R E, Mehl M J 1988 Phys. Rev. B 37 4727

    [21]

    Pu C Y, Tang X, Lü H F, Zhang Q Y 2011 Acta Phys. Sin. 60 037101 (in Chinese) [濮春英, 唐鑫, 吕海峰, 张庆瑜 2011 60 037101]

    [22]

    Guerrero-Moreno R J, Takeuchi N 2002 Phys. Rev. B 66 205205

    [23]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 1066]

    [24]

    Xu Y N, Ching W Y 1993 Phys. Rev. B 48 4335

    [25]

    Vegard L 1921 Z. Phys. 5 17

    [26]

    Fan X F, Zhu Z X, Ong Y S, Lu Y M, Shen Z X, Kuo J L 2007 Appl. Phys. Lett. 91 121121

    [27]

    Wei S H, Zunger A 1988 Phys. Rev. B 37 8958

    [28]

    Grivickas P, McCluskey M D, Gupta Y M 2009 Phys. Rev. B 80 073201

    [29]

    Zhang Y, Wen Y H, Zheng J C, Zhu Z Z 2010 Phys. Lett. A 374 2846

    [30]

    Janotti A, Segev D, Van de Walle C G 2006 Phys. Rev. B 74 45202

    [31]

    Massidda S, Resta R, Posternak M, Baldereschi A 1995 Phys. Rev. B 52 16977

    [32]

    Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767

    [33]

    Tang X, Lu H F, Zhao J J, Zhang Q Y 2010 J. Physics and Chemistry of Solids 71 336

    [34]

    Ferhat M, Bechstedt F 2002 Phys. Rev. B 65 075213

  • [1]

    Wdowik U D 2010 J. Phys: Condens. Matter 22 045404

    [2]

    Liu X L, Ren Y, Liang L W, Xu H 2010 Acta Phys. Chim. Sin. 26 2298 (in Chinese) [刘小良, 任意, 梁亮文, 徐慧 2010 物理化学学报 26 2298]

    [3]

    Wang Z J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 2992

    [4]

    Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标 2009 58 6446]

    [5]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim W J 2006 Appl. Phys. Lett. 88 052103

    [6]

    Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104

    [7]

    Ding S F, Fan G H, Li S T, Chen K, Xiao B 2007 Physical B 394 127

    [8]

    Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N 2007 Solid State Communications 144 5

    [9]

    Ishihara J, Nakamura A, Shigemori S, Aoki T, Temmyo J 2006 Appl. Phys. Lett. 89 091914

    [10]

    Sun H Q, Ding S F, Wang Y T, Deng B, Fan G H 2008 Acta Phys. Chim. Sin. 24 1233 (in Chinese) [孙慧卿, 丁少峰, 王雨田, 邓贝, 范广涵 2008 物理化学学报 24 1233]

    [11]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [12]

    Huang H C, Gilmer G H, Tomas Diaz de la Rubia 1998 J. Appl. Phys. 84 3636

    [13]

    Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [14]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [16]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [17]

    Amrani Bouhalouane, Hassan Fouad El Haj, Akbarzadeh Hadi 2007 J. Phys: Condens. Matter 19 436216

    [18]

    Boettger J C, Wills J M 1996 Phys. Rev. B 54 8965

    [19]

    Chang K J, Froyen S, Cohen M L 1983 J. Phys. C 16 3475

    [20]

    Jephcoat A P, Hemley R J, Mao H K, Cohen R E, Mehl M J 1988 Phys. Rev. B 37 4727

    [21]

    Pu C Y, Tang X, Lü H F, Zhang Q Y 2011 Acta Phys. Sin. 60 037101 (in Chinese) [濮春英, 唐鑫, 吕海峰, 张庆瑜 2011 60 037101]

    [22]

    Guerrero-Moreno R J, Takeuchi N 2002 Phys. Rev. B 66 205205

    [23]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 1066]

    [24]

    Xu Y N, Ching W Y 1993 Phys. Rev. B 48 4335

    [25]

    Vegard L 1921 Z. Phys. 5 17

    [26]

    Fan X F, Zhu Z X, Ong Y S, Lu Y M, Shen Z X, Kuo J L 2007 Appl. Phys. Lett. 91 121121

    [27]

    Wei S H, Zunger A 1988 Phys. Rev. B 37 8958

    [28]

    Grivickas P, McCluskey M D, Gupta Y M 2009 Phys. Rev. B 80 073201

    [29]

    Zhang Y, Wen Y H, Zheng J C, Zhu Z Z 2010 Phys. Lett. A 374 2846

    [30]

    Janotti A, Segev D, Van de Walle C G 2006 Phys. Rev. B 74 45202

    [31]

    Massidda S, Resta R, Posternak M, Baldereschi A 1995 Phys. Rev. B 52 16977

    [32]

    Anisimov V I, Aryasetiawan F, Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767

    [33]

    Tang X, Lu H F, Zhao J J, Zhang Q Y 2010 J. Physics and Chemistry of Solids 71 336

    [34]

    Ferhat M, Bechstedt F 2002 Phys. Rev. B 65 075213

  • [1] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] 曹青松, 邓开明. X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究.  , 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [3] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [4] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [5] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究.  , 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [6] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究.  , 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [7] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究.  , 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [8] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [9] 郑树文, 范广涵, 章勇, 何苗, 李述体, 张涛. Be和Ca掺杂纤锌矿ZnO的晶格常数与能带特性研究.  , 2012, 61(22): 227101. doi: 10.7498/aps.61.227101
    [10] 郑树文, 范广涵, 李述体, 张涛, 苏晨. Be1-xMgxO合金的能带特性与相结构稳定性研究.  , 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [11] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究.  , 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [12] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究.  , 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [14] 张秀荣, 高从花, 吴礼清, 唐会帅. WnNim(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究.  , 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [15] 刘强, 程新路, 范勇恒, 杨向东. Al和N共掺p型Zn1-xMgxO电子结构的第一性原理计算.  , 2009, 58(4): 2684-2691. doi: 10.7498/aps.58.2684
    [16] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [17] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究.  , 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [19] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  6187
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-27
  • 修回日期:  2012-02-13
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map